Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 10, pp 1125–1131 | Cite as

Purification, characterization, and coal depolymerizing activity of lignin peroxidase from Gloeophyllum sepiarium MTCC-1170

  • M. YadavEmail author
  • P. Yadav
  • K. D. S. Yadav
Article

Abstract

Lignin peroxidase from the liquid culture filtrate of Gloeophyllum sepiarium MTCC-1170 has been purified to homogeneity. The molecular weight of the purified enzyme was 42 kDa as determined by SDS-PAGE. The K m values were 54 and 76 µM for veratryl alcohol and H2O2, respectively. The pH and temperature optima were 2.5 and 25°C, respectively. Depolymerization of coal by the fungal strain has been demonstrated using humic acid as a model of coal. Depolymerization of humic acid by the purified lignin peroxidase has been shown by the decrease in absorbance at 450 nm and increase in absorbance at 360 nm in presence of H2O2. Depolymerization of humic acid by the purified enzyme has also been demonstrated by the decrease in the viscosity with time of the reaction solution containing humic acid, H2O2, and the purified lignin peroxidase. The influence of NaCl and NaN3 and inhibitory effects of various metal chelating agents on the lignin peroxidase activity were studied.

Key words

lignin peroxidase Gloeophyllum sepiarium veratryl alcohol humic acid 

Abbreviations

LiP

lignin peroxidase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angel, T., and Martinez, A. T. (2002) Enzyme Microb. Technol., 30, 425–444.CrossRefGoogle Scholar
  2. 2.
    Wong, D. W. (2008) Appl. Biochem. Biotechnol., DOI 10.1007/s1210-008-8279-z.Google Scholar
  3. 3.
    Piontek, K., Smith, A. T., and Blodig, W. (2001) Biochem. Soc. Trans., 29, 111–116.CrossRefPubMedGoogle Scholar
  4. 4.
    Catcheside, D. E. A., and Ralph, J. P. (1999) Appl. Microbiol. Biotechnol., 52, 16–24.CrossRefGoogle Scholar
  5. 5.
    Eriksson, K. E., and Kirk, T. K. (1994) FEMS Microbiol. Rev., 13, 351–364.CrossRefGoogle Scholar
  6. 6.
    Bumpus, J. A., Tien, M., Wright, D., and Aust, S. D. (1985) Science, 228, 1434–1436.CrossRefPubMedGoogle Scholar
  7. 7.
    Kwant, S. S., and Chang, J. K. (1998) Biotechnol. Lett., 20, 569–572.CrossRefGoogle Scholar
  8. 8.
    Satwinder, S. M., Rajesh, G., Chand, P., and John, F. K. (1998) J. Chem. Technol. Biotechnol., 73, 292–296.CrossRefGoogle Scholar
  9. 9.
    Yoshida, Y., Xia, Z., Takeda, K., Katsuta, T., Sugimato, K., and Funaoka, M. (2005) Polym. Advanced Technol., 16, 783–788.CrossRefGoogle Scholar
  10. 10.
    Ward, G., Hadar, Y., Bilkis, I., Konstantinovsky, L., and Dosoretz, C. G. (2001) J. Biol. Chem., 276, 18734–18741.CrossRefPubMedGoogle Scholar
  11. 11.
    Crawfold, D. L., and Crawfold, R. L. (1980) Enzyme Microb. Technol., 2, 11–22.CrossRefGoogle Scholar
  12. 12.
    Stephen, B. P., Anna, L. P., Gavin, J. D. S., Kevin, D. H., and Adinaryana, R. (2005) Mycol. Res., 109, 115–124.CrossRefGoogle Scholar
  13. 13.
    Shanmugam, V., and Yadav, K. D. S. (1996) Ind. J. Exp. Biol., 34, 1164–1165.Google Scholar
  14. 14.
    Shanmugam, V., and Yadav, K. D. S. (1997) Ind. J. Microbiol., 37, 105.Google Scholar
  15. 15.
    Tien, M., and Kirk, T. K. (1988) Meth. Enzymol., 161, 221–234.CrossRefGoogle Scholar
  16. 16.
    Kumari, M., Yadav, R. S. S., and Yadav, K. D. S. (2002) Ind. J. Exp. Biol., 40, 802–806.Google Scholar
  17. 17.
    Ion Exchange Chromatography: Principles and Methods (1983) Pharmacia Fine Chemicals, Uppsala, Sweden.Google Scholar
  18. 18.
    Werber, K., and Osborn, M. (1969) J. Biol. Chem., 244, 4406–4412.Google Scholar
  19. 19.
    Polyacrylamide Gel Electrophoresis: Laboratory Techniques (1983) Laboratory Separation Division, Pharmacia, S-75182, Uppsala, Sweden.Google Scholar
  20. 20.
    Engel, P. C. (1977) Enzyme Kinetics: The Steady State Approach, Chapman and Hall, London.Google Scholar
  21. 21.
    Yadav, M., and Yadav, K. D. S. (2006) Ind. J. Biochem. Biophys., 43, 48–51.Google Scholar
  22. 22.
    Hafrichter, M., and Fritsche, W. (1996) Appl. Microb. Biotechnol., 46, 220–225.CrossRefGoogle Scholar
  23. 23.
    Tuan, D. F. T., and Fuoss, R. M. (1963) Ind. J. Phys. Chem., 67, 1343.CrossRefGoogle Scholar
  24. 24.
    Baur, N., and Lewin, S. N. (1995) in Physical Methods of Organic Chemistry, Vol. I, Pt. I, 3rd Edn. (Weissberger, A., ed.) Interscience, New York, pp. 131–190.Google Scholar
  25. 25.
    Li-Wen, W., Showalter, A. M., and Ungar, I. A. (1997) Am. J. Botany, 84, 1247–1255.CrossRefGoogle Scholar
  26. 26.
    Wondrack, L., Szanto, M., and Wood, W. A. (1989) Appl. Biochem. Biotechnol., 20/21, 765–780.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of ChemistryD.D.U. Gorakhpur UniversityGorakhpurIndia

Personalised recommendations