Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 10, pp 1114–1124 | Cite as

Molecular mechanisms of transformation of SkQ mitotropic quinones and the search for new approaches to creation of selective free radical traps

  • S. A. Eremeyev
  • V. I. Kargin
  • K. A. Motovilov
  • V. N. Tashlitsky
  • V. Yu. Markov
  • G. A. Korshunova
  • N. V. Sumbatyan
  • M. Yu. Vyssokikh
  • L. S. YaguzhinskyEmail author
Article

Abstract

Features of the mechanism of action of positively charged benzoquinone derivatives (SkQ), which are the analogs of coenzyme Q (I), plastoquinone (II), and tocopherol (III), are discussed. It is usually considered that the main target of these compounds is mitochondria, where they accumulate due to the positive charge of the molecule. In the present work, it is shown with model systems that the reduced forms of compounds (I–III) under certain conditions can transform into electrically neutral cyclic zwitterions, which theoretically can escape from the matrix of energized mitochondria against the concentration gradient. A weak uncoupling effect of molecules I–III has been found on mitochondria. Its existence is in agreement with the abovementioned transformation of positively charged hydroquinones of type Ia–IIIa into electrically neutral molecules. The data obtained with model systems suggest that the target of SkQ hydroquinones as free radical traps may be not only mitochondria but also biochemical systems of the cytoplasm. Due to the presence of a large number of reactive oxygen species (ROS)-dependent signal systems in a cell, the functioning of cytoplasmic systems might be disturbed under the action of antioxidants. The problem of selective effect of antioxidants is discussed in detail in the present work, and a functional diagram of selective decrease of the “background level” of ROS based on differences in the intensity of background and “signal” ROS fluxes is considered.

Key words

free radical traps mitochondria ROS SkQ MitoQ uncoupling 

Abbreviations

CoQ

coenzyme Q

DQ

duroquinone

MitoQ

2,3-dimethoxy-5-methyl-1,4-quinone-6-decylbenzene triphenylphosphonium chloride

MitoQH2

2,3-dimethoxy-5-methyl-1,4-diol-6-decylbenzene triphenylphosphonium chloride

ROS

reactive oxygen species

SkQ1

2,3-dimethyl-1,4-quinone-5-decylbenzene triphenylphosphonium chloride

SkQ1H2

2,3-dimethyl-1,4-diol-5-decylbenzene triphenylphosphonium chloride

SkQ3

2,3,5-dimethyl-1,4-quinone-6-decylbenzene triphenylphosphonium chloride

SkQ3H2

2,3,5-dimethyl-1,4-diol-6-decylbenzene triphenylphosphonium chloride

TPP+

triphenylphosphonium cation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonenko, Yu. N., Avetisyan, A. V., Bakeyeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Yu., Izyumov, D. S., Khaylova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzayev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Yu., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryayeva, I. V., Tashlitsky, V. N., Vasilyev, J. M., Vyssokikh, M. Yu., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  2. 2.
    Murphy, M. P., and Smith, R. (2007) Annu. Rav. Pharmacol. Toxicol., 47, 629–656.CrossRefGoogle Scholar
  3. 3.
    Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.CrossRefGoogle Scholar
  4. 4.
    James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21259–21312.CrossRefGoogle Scholar
  5. 5.
    Koopman, W. J., Verkaart, S., Visch, H. J., van der Westhuizen, F. H., Murphy, M. P., van der Heuvel, L. W., Smeitink, J. A., and Willems, P. H. (2005) Am. J. Physiol. Cell Physiol., 288, 1440–1450.CrossRefGoogle Scholar
  6. 6.
    Kargin, V. I., Motovilov, K. A., Vyssokikh, M. Yu., and Yaguzhinsky, L. S. (2008) Biol. Membr. (Moscow), 25, 34–40.Google Scholar
  7. 7.
    Zhu, Q. S., Berden, J. A., de Vries, S., Folkers, K., Porter, T., and Slater, E. C. (1982) Biochim. Biophys. Acta, 680, 69–79.CrossRefPubMedGoogle Scholar
  8. 8.
    Forman, H. J., Fukuto, J. M., and Torres, M. (2004) Am. J. Physiol. Cell. Physiol., 287, 246–256.CrossRefGoogle Scholar
  9. 9.
    Moskovitz, J., Berlett, B. S., Poston, J. M., and Stadtman, E. R. (1997) Proc. Natl. Acad. Sci. USA, 94, 9585–9589.CrossRefPubMedGoogle Scholar
  10. 10.
    Sen, S. K. (1998) Biochem. Pharm., 55, 1747–1758.CrossRefPubMedGoogle Scholar
  11. 11.
    Pletjushkina, O. Y., Fetisova, E. K., Lyamzaev, K. G., Ivanova, O. Y., Domnina, L. V., Vyssokikh, M. Y., Pustovidko, A. V., Alexeevski, A. V., Alexeevski, D. A., Vasiliev, J. M., Murphy, M. P., Chernyak, B. V., and Skulachev, V. P. (2006) Biochemistry (Moscow), 71, 60–67.CrossRefGoogle Scholar
  12. 12.
    Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P. O. (2000) Mol. Biol. Cell., 11, 4241–4257.PubMedGoogle Scholar
  13. 13.
    Zheng, M., Aslund, F., and Storz, G. (1998) Science, 279, 1718–1721.CrossRefPubMedGoogle Scholar
  14. 14.
    Na, H. K., and Surh, Y. J. (2006) Mol. Carcinolog., 45, 368–380.CrossRefGoogle Scholar
  15. 15.
    Wu, R. F., and Terada, L. S. (2006) Sci. STKE, 332, 12.Google Scholar
  16. 16.
    Werner, E. (2004) J. Cell Sci., 117, 143–153.CrossRefPubMedGoogle Scholar
  17. 17.
    Ohba, M., Shibanuba, M., Kuroki, T., and Nose, K. (1994) J. Cell Biol., 126, 1079–1088.CrossRefPubMedGoogle Scholar
  18. 18.
    Wood, Z., Poole, L., and Karplus, A. (2003) Science, 300, 650–653.CrossRefPubMedGoogle Scholar
  19. 19.
    Peshenko, I. V., and Shichi, H. (1999) Free Rad. Biol. Med., 31, 292–303.CrossRefGoogle Scholar
  20. 20.
    Butterfield, L. H., Merino, A., Golub, S. H., and Shau, H. (1999) Science, 31, 292–303.Google Scholar
  21. 21.
    Bystrova, M. F., and Budanova, E. N. (2007) Biol. Membr. (Moscow), 24, 115–125.Google Scholar
  22. 22.
    Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B., and Rhee, S. G. (1997) J. Biol. Chem., 272, 217–221.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee, S. R., Yang, K. S., Know, J., Lee, S., Jeong, W., and Rhee, S. G. (1998) J. Biol. Chem., 273, 15366–15372.CrossRefPubMedGoogle Scholar
  24. 24.
    Sattler, M., Winkler, T., Verma, S., Byrne, S. H., Shrikhande, G., Salgia, R., and Griffin, J. D. (1999) Blood, 93, 2928–2935.PubMedGoogle Scholar
  25. 25.
    Belmonte, M. A., Santos, M. F., Kihara, A. H., Yan, C. Y. I., and Hamassaki, D. E. (2006) Invest. Ophthalmol. Vis. Sci., 47, 1193–1200.CrossRefPubMedGoogle Scholar
  26. 26.
    Deshpande, S. S., Qi, B., Park, Y. C., and Irani, K. (2003) Arterioscler. Thromb. Vasc. Biol., 23, 1–6.CrossRefGoogle Scholar
  27. 27.
    Birukov, K. G., Birukova, A. A., Dudek, S. M., Verin, A. D., Crow, M. T., Zhan, X., DePaola, N., and Garcia, J. G. N. (2002) Am. J. Respir. Cell Mol. Biol., 26, 453–464.PubMedGoogle Scholar
  28. 28.
    Hordijk, P. L. (2006) Circ. Res., 98, 453–462.CrossRefPubMedGoogle Scholar
  29. 29.
    Puceat, M. (2005) Antioxid. Redox. Signal., 7, 1435–1439.CrossRefPubMedGoogle Scholar
  30. 30.
    Johnson, D., and Lardy, H. (1967) Meth. Enzymol., 10, 94–96.CrossRefGoogle Scholar
  31. 31.
    Schwartz, J. E., and Durham, B. C. (1979) Ann. Clin. Lab. Sci., 9, 139–143.PubMedGoogle Scholar
  32. 32.
    Karas, M., Bachmann, D., Bahr, D., and Hillenkamp, F. (1987) Int. J. Mass Spectrom. Ion Proc., 78, 53–68.CrossRefGoogle Scholar
  33. 33.
    Korshunov, S. S., Korkina, O. V., Ruuge, E. K., Skulachev, V. P., and Starkov, A. A. (1998) FEBS Lett., 432, 215–218.CrossRefGoogle Scholar
  34. 34.
    Ovchinnikov, Yu. A., Ivanov, V. T., and Shkrob, A. M. (1974) Membrane-Active Chelators [in Russian], Nauka, Moscow.Google Scholar
  35. 35.
    Blaikie, F. H., Brown, S. E., Samuelsson, L. M., Brand, M. D., Smith, R. A. J., and Murphy, P. (2006) Biosci. Rep., 26, 231–243.CrossRefPubMedGoogle Scholar
  36. 36.
    James, A. M., Smith, R. A., and Murphy, M. P. (2004) Arch. Biochem. Biophys., 423, 47–56.CrossRefPubMedGoogle Scholar
  37. 37.
    Burlakova, E. B., Krashakov, S. A., and Khrapova, N. G. (1998) Biol. Membr. (Moscow), 15, 137–167.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. A. Eremeyev
    • 1
  • V. I. Kargin
    • 1
  • K. A. Motovilov
    • 1
  • V. N. Tashlitsky
    • 1
  • V. Yu. Markov
    • 1
  • G. A. Korshunova
    • 1
  • N. V. Sumbatyan
    • 1
  • M. Yu. Vyssokikh
    • 1
  • L. S. Yaguzhinsky
    • 1
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations