Biochemistry (Moscow)

, Volume 74, Issue 10, pp 1096–1103 | Cite as

Effect of entomocidal proteins from Bacillus thuringiensis on ion permeability of apical membranes of Tenebrio molitor larvae gut epithelium

  • I. M. AndreevEmail author
  • N. V. Bulushova
  • I. A. Zalunin
  • G. G. Chestukhina


Effects of entomocidal Cry-type proteins, δ-endotoxins Cry3A and Cry11A produced by Bacillus thuringiensis, on ion permeability of the apical membranes of intestinal epithelium from Tenebrio molitor larvae midgut were studied. Using potential-sensitive dyes safranine O and oxonol VI and δpH indicator acridine orange, it was shown that placing brush border membrane vesicles (BBMV) (loaded with Mg2+ during their preparation) into a salt-free buffer medium resulted in spontaneous generation of transmembrane electric potential on the vesicular membrane (negative inside the vesicles) accompanied by acidification of the aqueous phase inside the vesicles. The generation of transmembrane ion gradients on the vesicular membrane was a result of an electrogenic efflux of Mg2+ from the vesicles as shown by abolishing of the membrane potential by such agents as MgSO4 or CaCl2 in centimolar concentrations, a highly lipophilic cation tetraphenylphosphonium, and some blockers of cell membrane Ca2+-channels in submillimolar concentrations. A passive generation of membrane potential on the vesicular membrane (but positive inside the vesicles) was also observed upon addition of centimolar concentrations of K2SO4. Addition of δ-endotoxins Cry3A and Cry11A to the vesicle suspension in a salt-free buffer medium or in the same medium supplemented with centimolar concentrations of K2SO4 exerted a pronounced hyperpolarization of the vesicular membrane. This hyperpolarization was sensitive to the same agents, which abolished the membrane potential generation in the absence of δ-endotoxin. It is concluded that Cry proteins induced in BBMV from T. molitor opening pores or ion channels, which were considerably more permeable for alkaline- and alkaline-earth metal cations than for the accompanying anions.

Key words

Bacillus thuringiensis δ-endotoxin Cry3A Tenebrio molitor BBMV membrane potential ion channels potential-sensitive dyes membranotropic effect of δ-endotoxin Cry3A 



brush border membrane vesicles




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schnepf, E., Crickmore, N., van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean, D. H. (1998) Microbiol. Mol. Biol. Rev., 62, 775–806.PubMedGoogle Scholar
  2. 2.
    Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., van Rie, J., Lereclus, D., Baum, J., and Dean, D. H. (1998) Microbiol. Mol. Biol. Rev., 62, 807–813.PubMedGoogle Scholar
  3. 3.
    Chestukhina, G. G., Kostina, L. I., Mikhailova, A. L., Tyurin, S. A., Klepikova, F. S., and Stepanov, V. M. (1982) Arch. Microbiol., 132, 159–162.CrossRefGoogle Scholar
  4. 4.
    Bravo, A., Gill, S. S., and Soberon, M. (2007) Toxicon, 49, 423–435.CrossRefPubMedGoogle Scholar
  5. 5.
    Schwartz, J. L., Garneau, L., Savaria, D., Masson, L., Brousseau, R., and Rousseau, E. (1993) J. Membr. Biol., 132, 53–62.PubMedGoogle Scholar
  6. 6.
    Uemura, T., Ihara, H., Wadano, A., and Himeno, M. (1992) Biosci. Biotech. Biochem., 56, 1976–1979.CrossRefGoogle Scholar
  7. 7.
    Peyronnet, O., Noulin, J.-F., Laprade, R., and Schwartz, J.-L. (2004) J. Insect. Physiol., 50, 791–803.CrossRefPubMedGoogle Scholar
  8. 8.
    Azuma, M., Harvey, W. R., and Wieczorek, H. (1995) FEBS Lett., 361, 153–156.CrossRefPubMedGoogle Scholar
  9. 9.
    Wieczorek, H., Gruber, G., Harvey, W. R., Huss, M., Merzendorfer, H., and Zeiske, W. (2000) J. Exp. Biol., 203, 127–135.PubMedGoogle Scholar
  10. 10.
    Dow, J. A. T. (1984) Am. J. Physiol., 246, R633–R635.PubMedGoogle Scholar
  11. 11.
    Rausell, C., Garcia-Robles, I., Sanchez, J., Munoz-Garay, C., Martinez-Ramirez, A. C., Real, M. D., and Bravo, A. (2004) Biochim. Biophys. Acta, 1660, 99–105.CrossRefPubMedGoogle Scholar
  12. 12.
    Ochoa-Campuzano, C., Real, M. D., Martinez-Ramirez, A. C., Bravo, A., and Rausell, C. (2007) Biochem. Biophys. Res. Commun., 70, 101–109.Google Scholar
  13. 13.
    Carroll, J., Li, J., and Ellar, D. J. (1989) Biochem. J., 261, 99–105.PubMedGoogle Scholar
  14. 14.
    Chestukhina, G. G., Kostina, L. I., Zalunin, I. A., Kotova, T. S., Katrukha, S. P., Kuznetsov, Yu. S., and Stepanov, V. M. (1977) Biokhimiya, 42, 1660–1667.Google Scholar
  15. 15.
    Dronina, M. A., Revina, L. P., Kostina, L. I., Ganushkina, L. A., Zalunin, I. A., and Chestukhina, G. G. (2006) Biochemistry (Moscow), 71, 133–139.CrossRefGoogle Scholar
  16. 16.
    Wolfersberger, M. G., Luethy, P., Maurer, A., Parenti, P., Sacchi, F. V., Giordana, B., and Hanozet, M. (1987) Comp. Biochem. Physiol., 86A, 301–308.CrossRefGoogle Scholar
  17. 17.
    Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  18. 18.
    Akerman, K. E. O., and Wikstrom, K. F. (1976) FEBS Lett., 68, 191–197.CrossRefPubMedGoogle Scholar
  19. 19.
    Appel, H.-J., and Bersch, B. (1987) Biochim. Biophys. Acta, 903, 480–494.CrossRefGoogle Scholar
  20. 20.
    Palmgren, M. G. (1991) Analyt. Biochem., 192, 316–321.CrossRefPubMedGoogle Scholar
  21. 21.
    Blankemeyer, J. T. (1978) Biophys. J., 23, 313–318.CrossRefPubMedGoogle Scholar
  22. 22.
    Zeiske, W., Meyer, H., and Wieczorek, H. (2002) J. Exp. Biol., 205, 463–474.PubMedGoogle Scholar
  23. 23.
    Peyronnet, O., Vachon, V., Schwartz, J. L., and Laprade, R. (2000) J. Exp. Biol., 203, 1835–1844.PubMedGoogle Scholar
  24. 24.
    Lorence, A., Darszon, A., Diaz, C., Lievano, A., Quintera, R., and Bravo, A. (1995) FEBS Lett., 360, 217–222.CrossRefPubMedGoogle Scholar
  25. 25.
    Lorence, A., Darszon, A., and Bravo, A. (1997) FEBS Lett., 414, 303–307.CrossRefPubMedGoogle Scholar
  26. 26.
    Chao, A. C., Koch, A. R., and Moffett, D. F. (1989) Am. J. Physiol., 257, 752–761.Google Scholar
  27. 27.
    Vinokurov, K. S., Elpidina, E. N., Oppert, B., Prabhakar, S., Zhuzhikov, D. P., Dunaevsky, Y. E., and Belozersky, M. A. (2006) Comp. Biochem. Physiol. Biochem. Mol. Biol., 145, 126–137.CrossRefGoogle Scholar
  28. 28.
    Sciotrino, C. M., Shrode, L. D., Fletcher, B. R., Harte, P. J., and Romero, M. F. (2001) Am. J. Physiol. Cell Physiol., 281, C499–463.Google Scholar
  29. 29.
    Onken, H., Moffett, S. B., and Moffett, D. F. (2004) J. Exp. Biol., 207, 1779–1787.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsien, R. W. (1990) Rev. Cell. Biol., 6, 715–760.CrossRefGoogle Scholar
  31. 31.
    Bravo, A., Miranda, R., Gomez, I., and Soberon, M. (2002) Biochim. Biophys. Acta Biomembr., 1562, 63–69.CrossRefGoogle Scholar
  32. 32.
    Monette, R., Potvin, L., Baines, D., Laprade, R., and Schwartz, J. L. (1997) Appl. Environ. Microbiol., 63, 440–447.PubMedGoogle Scholar
  33. 33.
    Potvin, L., Laprade, R., and Schwartz, R. (1998) J. Exp. Biol., 201, 1851–1858.PubMedGoogle Scholar
  34. 34.
    Revina, L. P., Kostina, L. I., Ganushkina, L. A., Mikhailova, A. L., Zalunin, I. A., and Chestikhina, G. G. (2004) Biochemistry (Moscow), 69, 181–187.CrossRefGoogle Scholar
  35. 35.
    Tran, L. B., Vachon, V., Jean-Louis Schwartz, J.-L., and Laprade, R. (2001) Appl. Environ. Microbiol., 67, 4488–4494.CrossRefPubMedGoogle Scholar
  36. 36.
    Fortier, M., Vachon, V., Kirouac, M., Schwartz, J. L., and Laprade, R. (2005) J. Membr. Biol., 208, 77–87.CrossRefPubMedGoogle Scholar
  37. 37.
    Vachon, V., Paradis, M.-J., Marsolais, M., Schwartz, J.-L., and Laprade, R. (1995) J. Membr. Biol., 148, 57–63.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. M. Andreev
    • 1
    Email author
  • N. V. Bulushova
    • 2
  • I. A. Zalunin
    • 2
  • G. G. Chestukhina
    • 2
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Genetics and Selection of Industrial MicroorganismsMoscowRussia

Personalised recommendations