Biochemistry (Moscow)

, Volume 74, Issue 10, pp 1080–1087 | Cite as

Reduction of photosystem I reaction center by recombinant DrgA protein in isolated thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803

  • I. V. ElanskayaEmail author
  • V. A. Toporova
  • V. G. Grivennikova
  • E. M. Muronets
  • E. P. Lukashev
  • K. N. Timofeev


To study the function of soluble NAD(P)H:quinone oxidoreductase of the cyanobacterium Synechocystis sp. PCC 6803 encoded by drgA gene, recombinant DrgA protein carrying 12 histidine residues on the C-terminal end was expressed in Escherichia coli and purified. Recombinant DrgA is a flavoprotein that exhibits quinone reductase and nitroreductase activities with NAD(P)H as the electron donor. Using EPR spectroscopy, it was demonstrated that addition of recombinant DrgA protein and NADPH to DCMU-treated isolated thylakoid membranes of the cyanobacterium increased the dark rereduction rate of the photosystem I reaction center (P700+). Thus, DrgA can participate in electron transfer from NADPH to the electron transport chain of the Synechocystis sp. PCC 6803 thylakoid membrane.

Key words

cyanobacteria drgA gene NAD(P)H:quinone oxidoreductase cyclic electron transport around photosystem I EPR spectroscopy 





2,6-dichlorophenol indophenol; decylplasto-quinone, 2,3-dimethyl-6-decyl-1,4-benzoquinone; dinoseb, 2-sec-butyl-4,6-dinitrophenol; duroquinone, tetramethyl-1,4-benzoquinone


electron transport chain




flavin mononucleotide






polymerase chain reaction


phenylmethylsulfonyl fluoride






2,3-dimethoxy-5-methyl-1,4-benzoquinone (ubiquinone Q0)


superoxide dismutase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Molitor, L. W., Trnka, M., and Peschek, G. A. (1987) Curr. Microbiol., 14, 263–268.CrossRefGoogle Scholar
  2. 2.
    Vermaas, W. F. J., Shen, G., and Styring, S. (1994) FEBS Lett., 337, 103–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Mi, H., Endo, T., Oqawa, T., and Asada, K. (1995) Plant Cell Physiol., 36, 661–668.Google Scholar
  4. 4.
    Battchikova, N., and Aro, E.-M. (2007) Physiol. Plant., 131, 22–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Howitt, C. A., and Vermaas, W. F. J. (1999) J. Bacteriol., 81, 3994–4003.Google Scholar
  6. 6.
    Chesnavichene, E. A., Elanskaya, I. V., Bartsevich, V. V., and Shestakov, S. V. (1994) Doklady RAN, 334, 657–659.Google Scholar
  7. 7.
    Elanskaya, I. V., Chesnavichene, E. A., Vernotte, C., and Astier, C. (1998) FEBS Lett., 428, 188–192.CrossRefPubMedGoogle Scholar
  8. 8.
    Matsuo, M., Endo, T., and Asada, K. (1998) Plant Cell Physiol., 39, 751–755.PubMedGoogle Scholar
  9. 9.
    Takeda, K., Iizuka, M., Watanabe, T., Nakagawa, J., Kawasaki, S., and Nimura, Y. (2007) FEBS J., 274, 1318–1327.CrossRefPubMedGoogle Scholar
  10. 10.
    Elanskaya, I. V., Grivennikova, V. G., Groshev, V. V., Kuznetsova, V. G., Semina, M. E., and Timofeev, K. N. (2004) Biochemistry (Moscow), 69, 137–142.CrossRefGoogle Scholar
  11. 11.
    Elanskaya, I. V., Timofeev, K. N., Grivennikova, V. G., Kuznetsova, G. V., Davletshina, L. N., Lukashev, E. P., and Yaminsky, F. V. (2004) Biochemistry (Moscow), 69, 445–454.CrossRefGoogle Scholar
  12. 12.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  13. 13.
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) J. Gen. Microbiol., 111, 1–61.Google Scholar
  14. 14.
    Amann, E., Ochs, B., and Abel, K.-J. (1988) Gene, 69, 301–315.CrossRefPubMedGoogle Scholar
  15. 15.
    Grigorieva, G., and Shestakov, S. (1992) FEMS Microbiol. Lett., 13, 367–370.CrossRefGoogle Scholar
  16. 16.
    Laemmli, U. K. (1970) Nature (London), 227, 680–685.Google Scholar
  17. 17.
    Pool, C. P., Jr. (1997) Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques, 2nd Edn., Dover Publication Inc., N. Y., p. 408.Google Scholar
  18. 18.
    Grajek, H., Liwo, A., Wiczk, W., and Zurkowska, G. (2007) J. Photochem. Photobiol. B: Biol., 86, 193–198.CrossRefGoogle Scholar
  19. 19.
    Grajek, H., Zurkowska, G., and Kusba, J. (2005) J. Photochem. Photobiol. B: Biol., 80, 145–155.CrossRefGoogle Scholar
  20. 20.
    Jeanjean, R., van Thor, J. J., Havaux, M., Joset, F., and Mattijs, H. C. P. (1999) in The Phototrophic Prokaryotes (Peshek, G. A., et al., eds.) Kluwer/Plenum, New York, pp. 251–258.Google Scholar
  21. 21.
    Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., and Shikanai, T. (2002) Cell, 110, 361–371.CrossRefPubMedGoogle Scholar
  22. 22.
    Yeremenko, N., Jeanjean, R., Prommeenate, P., Krasikov, V., Nixon, P. J., Vermaas, W. F. J., Havaux, M., and Matthijs, H. (2005) Plant Cell Physiol., 46, 1433–1436.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. V. Elanskaya
    • 1
    Email author
  • V. A. Toporova
    • 2
  • V. G. Grivennikova
    • 1
  • E. M. Muronets
    • 1
  • E. P. Lukashev
    • 1
  • K. N. Timofeev
    • 1
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations