Biochemistry (Moscow)

, Volume 74, Issue 9, pp 1049–1055 | Cite as

In silico analysis of pectin lyase and pectinase sequences

  • P. K. Yadav
  • V. K. Singh
  • S. Yadav
  • K. D. S. Yadav
  • D. YadavEmail author


A total of 48 full-length protein sequences of pectin lyases from different source organisms available in NCBI were subjected to multiple sequence alignment, domain analysis, and phylogenetic tree construction. A phylogenetic tree constructed on the basis of the protein sequences revealed two distinct clusters representing pectin lyases from bacterial and fungal sources. Similarly, the multiple accessions of different source organisms representing bacterial and fungal pectin lyases also formed distinct clusters, showing sequence level homology. The sequence level similarities among different groups of pectinase enzymes, viz. pectin lyase, pectate lyase, polygalacturonase, and pectin esterase, were also analyzed by subjecting a single protein sequence from each group with common source organism to tree construction. Four distinct clusters representing different groups of pectinases with common source organisms were observed, indicating the existing sequence level similarity among them. Multiple sequence alignment of pectin lyase protein sequence of different source organisms along with pectinases with common source organisms revealed a conserved region, indicating homology at sequence level. A conserved domain Pec_Lyase_C was frequently observed in the protein sequences of pectin lyases and pectate lyases, while Glyco_hydro_28 domains and Pectate lyase-like β-helix clan domain are frequently observed in polygalacturonases and pectin esterases, respectively. The signature amino acid sequence of 41 amino acids, i.e. TYDNAGVLPITVN-SNKSLIGEGSKGVIKGKGLRIVSGAKNI, related with the Pec_Lyase_C is frequently observed in pectin lyase protein sequences and might be related with the structure and enzymatic function.

Key words

pectin lyase pectate lyase polygalacturonase pectin esterase domain analysis 



Multiple EM for Motif Elicitation


National Center for Biotechnology Information


Neighbor-Joining method


polymerase chain reaction


pectin esterase




pectate lyase


pectin lyase

UPGMA method

Unweighted Pair Group method with Arithmetic Mean method


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2009_9085_MOESM1_ESM.pdf (484 kb)
Supplementary material, approximately 340 KB.


  1. 1.
    Yadav, S., Yadav, P. K., Yadav, D., and Yadav, K. D. S. (2009) Process Biochem., 44, 1–10.CrossRefGoogle Scholar
  2. 2.
    Visser, J., Bussink, H. J., and Witteveen, C. (2004) in Gene Expression in Recombinant Microorganisms (Smith, A., ed.) Marcel Dekker, Inc., New York, pp. 241–306.Google Scholar
  3. 3.
    Cosgrove, D. J. (1997) Ann. Rev. Cell. Dev. Biol., 13, 171–201.CrossRefGoogle Scholar
  4. 4.
    Prade, R. A., Zohan, D., Ayoubi, P., and Mort, A. J. (1999) Biotechnol. Gene Eng. Rev., 16, 361–391.Google Scholar
  5. 5.
    Jayani, S. R., Saxena, S., and Gupta, R. (2005) Process Biochem., 40, 2931–2944.CrossRefGoogle Scholar
  6. 6.
    Luh, B. S., and Phaff, H. J. (1951) Arch. Biochem. Biophys., 33, 212–227.CrossRefGoogle Scholar
  7. 7.
    Gysler, C., Harmsen, J. A. M., Kester, H. C. M., Visser, J., and Heim, J. (1990) Gene, 89, 101–108.PubMedCrossRefGoogle Scholar
  8. 8.
    Someren, M. A. K., Harmsen, J. A. M., Kester, H. C. M., and Visser, J. (1991) Curr. Gen., 20, 293–299.CrossRefGoogle Scholar
  9. 9.
    Someren, M. A. K., Flipphi, M., de Graaff, L., van den Broeck, H., Kester, H., Hinnen, A., and Visser, J. (1992) Mol. Gen. Genom., 234, 113–120.Google Scholar
  10. 10.
    Kitamoto, N., Yasuda, Y. S., Ohmiya, K., and Tsukagoshi, N. (2001) Biosci. Biotechnol. Biochem., 65, 209–212.PubMedCrossRefGoogle Scholar
  11. 11.
    Templeton, M. D., Sharrock, K. R., Bowen, J. K., Crowhurst, R. N., and Rikkerink, E. H. (1994) Gene, 142, 141–146.PubMedCrossRefGoogle Scholar
  12. 12.
    Kilara, A. (1982) Process Biochem., 23, 35–41.Google Scholar
  13. 13.
    Naidu, G. S. N., and Panda, T. (1998) Bioprocess. Eng., 9, 355–361.CrossRefGoogle Scholar
  14. 14.
    Alkorta, I., Garbisu, G., Llama, M. J., and Serra, J. L. (1998) Process Biochem., 33, 21–28.CrossRefGoogle Scholar
  15. 15.
    Blanco, P., Sieiro, C., Reboredo, N. M., and Villa, T. G. (1997) Arch. Microbiol., 167, 284–288.PubMedCrossRefGoogle Scholar
  16. 16.
    Takebe, I., Otsuki, Y., and Aoki, S. (1968) Plant Cell Physiol., 9, 115–124.Google Scholar
  17. 17.
    Beldman, G., Rombouts, F. M., Voragen, A. G. J., and Pilnik, W. (1984) Enz. Microb. Technol., 6, 503–507.CrossRefGoogle Scholar
  18. 18.
    Whitaker, J. R. (1991) in Microbial Enzymes and Biotechnology (Fogarty, W. M., and Kelly, C. T., eds.) Elsevier Applied Science, London-New York, pp. 133–175.Google Scholar
  19. 19.
    Mayans, O., Scott, M., Connerton, I., Gravesen, T., Benen, J., Visser, J., Pickersgill, R., and Jenkins, J. (1997) Structure, 5, 677–689.PubMedCrossRefGoogle Scholar
  20. 20.
    Vitali, J., Schick, B., Kester, H. C. M., Visser, J., and Jurnak, F. (1998) Plant Physiol., 116, 69–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Lassmann, T., and Sonnhammer, E. L. (2006) Nucleic Acids Res., 34 (Web Server Issue), W596-9.Google Scholar
  22. 22.
    Kumar, S., Tamura, K., and Nei, M. (2004) Brief. Bioinformatics, 5, 150–163.PubMedCrossRefGoogle Scholar
  23. 23.
    Saitou, N., and Nei, M. (1987) Mol. Biol. Evol., 4, 406–425.PubMedGoogle Scholar
  24. 24.
    Shi, G. Y., Jie, T. Y., Bing, T. H., Hua, W. K., and Wei, C. K. (2007) Chin. J. Agric. Biotechnol., 4, 33–38.CrossRefGoogle Scholar
  25. 25.
    Timothy, L. B., and Gribskov, M. (1997) J. Comp. Biol., 4, 45–59.CrossRefGoogle Scholar
  26. 26.
    Timothy, L. B., and Gribskov, M. (1998) Bioinformatics, 14, 48–54.CrossRefGoogle Scholar
  27. 27.
    Yoder, M. D., Keen, N. T., and Jurnak, F. (1993) Science, 260, 1503–1507.PubMedCrossRefGoogle Scholar
  28. 28.
    Lietzke, S. E., Yoder, M. D., Keen, N. T., and Jurnak, F. (1994) Plant Physiol., 106, 849–862.PubMedGoogle Scholar
  29. 29.
    Pickersgill, R., Jenkins, J., Harris, G., Nasser, W., and Robert-Baudouy, J. (1994) Nat. Struct. Biol., 1, 717–723.PubMedCrossRefGoogle Scholar
  30. 30.
    Herron, S. R., Benen, J. A. E., Scavetta, R. D., Visser, J., and Jurnak, F. (2000) Proc. Natl. Acad. Sci. USA, 97, 8762–8769.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • P. K. Yadav
    • 1
    • 2
  • V. K. Singh
    • 3
  • S. Yadav
    • 2
  • K. D. S. Yadav
    • 2
  • D. Yadav
    • 1
    • 3
    Email author
  1. 1.Department of BiotechnologyDeen Dayal Upadhyaya Gorakhpur UniversityGorakhpurIndia
  2. 2.Department of ChemistryDeen Dayal Upadhyaya Gorakhpur UniversityGorakhpurIndia
  3. 3.Department of Molecular Biology and Genetic Engineering, CBSHG. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations