Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 9, pp 1035–1043 | Cite as

Chitosan-induced programmed cell death in plants

  • L. A. Vasil’ev
  • E. V. Dzyubinskaya
  • R. A. Zinovkin
  • D. B. Kiselevsky
  • N. V. Lobysheva
  • V. D. SamuilovEmail author
Article

Abstract

Chitosan, CN, or H2O2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H2O2, or chitosan + H2O2 on EC. H2O2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN and the protonophoric uncoupler carbonyl cyanide m-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H2O2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H2O2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.

Key words

programmed cell death apoptosis autophagy chitosan plants epidermal cells 

Abbreviations

CCCP

carbonyl cyanide m-chlorophenylhydrazone

DAPI

4′,6-diamidino-2-phenylindole

DCF

2′,7′-dichlorofluorescein

DCF-DA

2′,7′-dichlorofluorescein diacetate

DPI

diphenylene iodonium

EC

epidermal cells

GC

guard cells

NBT

nitroblue tetrazolium

PCD

programmed cell death

ROS

reactive oxygen species

TMRE

tetramethylrhodamine ethyl ester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woltering, E., van der Bent, F., and Hoeberichts, F. A. (2002) Plant Physiol., 130, 1764–1769.PubMedCrossRefGoogle Scholar
  2. 2.
    Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.Google Scholar
  3. 3.
    Proskuryakov, S. Ya., Gabai, V. L., and Konoplyanikov, V. L. (2002) Biochemistry (Moscow), 67, 387–408.CrossRefGoogle Scholar
  4. 4.
    Guimaraes, C. A., and Linden, R. (2004) Eur. J. Biochem., 271, 1638–1650.CrossRefGoogle Scholar
  5. 5.
    Festjens, N., Vanden Berghe, T., and Vandenabeele, P. (2006) Biochim. Biophys. Acta, 1757, 1371–1387.PubMedCrossRefGoogle Scholar
  6. 6.
    Van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., and Vandenabeele, P. (2002) Cell Death Differ., 9, 1031–1042.PubMedCrossRefGoogle Scholar
  7. 7.
    Skulachev, V. P. (2006) Apoptosis, 11, 473–485.PubMedCrossRefGoogle Scholar
  8. 8.
    Vacca, R. A., Valenti, D., Bobba, A., Merafina, R. S., Passarella, S., and Marra, E. (2006) Plant Physiol., 141, 208–219.PubMedCrossRefGoogle Scholar
  9. 9.
    Yao, N., Eisfelder, B. J., Marvin, J., and Greenberg, J. T. (2004) Plant J., 40, 596–610.PubMedCrossRefGoogle Scholar
  10. 10.
    Samuilov, V. D., Lagunova, E. M., Beshta, O. E., and Kitashov, A. V. (2000) Biochemistry (Moscow), 65, 696–702.Google Scholar
  11. 11.
    Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, E. V., Kiselevsky, D. B., and Makarova, Ya. V. (2002) Biochemistry (Moscow), 67, 627–634.CrossRefGoogle Scholar
  12. 12.
    Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Ya. V., and Gusev, M. V. (2003) Biosci. Rep., 23, 103–117.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, H., Li, J., Bostock, R. M., and Gilchrist, D. G. (1996) Plant Cell, 8, 375–391.PubMedCrossRefGoogle Scholar
  14. 14.
    Ryerson, D. E., and Heath, M. C. (1996) Plant Cell, 8, 393–402.PubMedCrossRefGoogle Scholar
  15. 15.
    Bakeeva, L. E., Dzyubinskaya, Ye. V., and Samuilov, V. D. (2005) Biochemistry (Moscow), 70, 972–979.CrossRefGoogle Scholar
  16. 16.
    Dzyubinskaya, E. V., Kiselevsky, D. B., Lobysheva, N. V., Shestak, A. A., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 1120–1127.CrossRefGoogle Scholar
  17. 17.
    Ishida, H., Shimizu, S., Makino, A., and Mae, T. (1998) Planta, 204, 305–309.PubMedCrossRefGoogle Scholar
  18. 18.
    Boller, T. (1995) Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 189–214.CrossRefGoogle Scholar
  19. 19.
    Dangl, J. L., and Jones, J. D. G. (2001) Nature, 441, 826–833.CrossRefGoogle Scholar
  20. 20.
    Ito, Y., Kaku, H., and Shibuya, N. (1997) Plant J., 12, 347–356.PubMedCrossRefGoogle Scholar
  21. 21.
    Day, R. B., Okada, M., Ito, Y., Tsukada, K., Zaghouani, H., Shibuya, N., and Stacey, G. (2001) Plant Physiol., 126, 1162–1173.PubMedCrossRefGoogle Scholar
  22. 22.
    Okada, M., Matsumara, M., Ito, Y., and Shubuya, N. (2002) Plant Cell Physiol., 43, 505–512.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Proc. Natl. Acad. Sci. USA, 103, 11086–11091.PubMedCrossRefGoogle Scholar
  24. 24.
    Pospieszny, H., and Atabekov, J. G. (1989) Plant Sci., 62, 29–31.CrossRefGoogle Scholar
  25. 25.
    Pospieszny, H., Chirkov, S. N., and Atabekov, J. G. (1991) Plant Sci., 79, 63–68.CrossRefGoogle Scholar
  26. 26.
    Zuppini, A., Baldan, B., Millioni, R., Favaron, F., Navazio, L., and Mariani, P. (2003) New Phytol., 161, 557–568.CrossRefGoogle Scholar
  27. 27.
    Iriti, M., Sironi, M., Gomarasca, S., Casazza, A. P., Soave, C., and Faoro, F. (2006) Plant Physiol. Biochem., 44, 893–900.PubMedCrossRefGoogle Scholar
  28. 28.
    Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y., and Mayama, S. (2001) Mol. Plant-Microbe Interact., 14, 477–486.PubMedCrossRefGoogle Scholar
  29. 29.
    LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Chem. Res. Toxicol., 5, 227–231.PubMedCrossRefGoogle Scholar
  30. 30.
    Wrona, M., Patel, K., and Wardman, P. (2005) Free Radic. Biol. Med., 38, 262–270.PubMedCrossRefGoogle Scholar
  31. 31.
    Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S., and Thompson, W. F. (2006) Nature Protocols, 1, 2320–2325.PubMedCrossRefGoogle Scholar
  32. 32.
    Auclair, C., and Voisin, E. (1985) in CRC Handbook of Methods for Oxygen Radical Research (Greenwald, R. A., ed.) CRC Press, Boca Raton, Florida, pp. 123–132.Google Scholar
  33. 33.
    Goldstein, S., Michel, C., Bors, W., Saran, M., and Czapski, G. (1988) Free Radic. Biol. Med., 4, 295–303.PubMedCrossRefGoogle Scholar
  34. 34.
    Metzler, D. E. (1977) Biochemistry: The Chemical Reactions of Living Cell, Chap. 8: K4, Academic Press, New York.Google Scholar
  35. 35.
    Averyanov, A. A., and Lapikova, V. P. (1988) Fiziol. Rast., 35, 1142–1151.Google Scholar
  36. 36.
    Shen, B., Jensen, R. G., and Bohnert, H. J. (1997) Plant Physiol., 115, 527–532.PubMedGoogle Scholar
  37. 37.
    Siedow, J. N., and Umbach, A. L. (1995) Plant Cell, 7, 821–831.PubMedCrossRefGoogle Scholar
  38. 38.
    Van Gestelen, P., Asard, H., and Caubergs, R. J. (1997) Plant Physiol., 115, 543–550.PubMedGoogle Scholar
  39. 39.
    Papadakis, A. K., and Roubelakis-Angelakis, K. A. (1999) Plant Physiol., 121, 197–205.PubMedCrossRefGoogle Scholar
  40. 40.
    Frahry, G., and Schopfer, P. (2001) Planta, 212, 175–183.PubMedCrossRefGoogle Scholar
  41. 41.
    Dat, J. F., Pellinen, R., Beeckman, T., van de Cotte, B., Langebartels, C., Kangasjarvi, J., Inze, D., and van Breusegem, F. (2003) Plant J., 33, 621–632.PubMedCrossRefGoogle Scholar
  42. 42.
    Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., and Nesov, A. V. (2006) Biochemistry (Moscow), 71, 384–394.CrossRefGoogle Scholar
  43. 43.
    Dzyubinskaya, E. V., Kiselevsky, D. B., Bakeeva, L. E., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 395–405.CrossRefGoogle Scholar
  44. 44.
    Takatsuka, C., Inoue, Y., Matsuoka, K., and Moriyasu, Y. (2004) Plant Cell Physiol., 45, 265–274.PubMedCrossRefGoogle Scholar
  45. 45.
    Moller, I. M. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 561–591.PubMedCrossRefGoogle Scholar
  46. 46.
    Puntarulo, S., Sanchez, R. A., and Boveris, A. (1988) Plant Physiol., 86, 626–630.PubMedCrossRefGoogle Scholar
  47. 47.
    Purvis, A. C., Shewfelt, R. L., and Gegogeine, J. W. (1995) Physiol. Plant., 94, 743–749.CrossRefGoogle Scholar
  48. 48.
    Rich, P. R., Boveris, A., Bonner, W. D., and Moore, A. L. (1976) Biochem. Biophys. Res. Commun., 71, 695–703.PubMedCrossRefGoogle Scholar
  49. 49.
    Purvis, A. C. (1997) Physiol. Plant., 100, 165–170.CrossRefGoogle Scholar
  50. 50.
    Braidot, E., Petrussa, E., Vianello, A., and Macri, F. (1999) FEBS Lett., 451, 347–350.PubMedCrossRefGoogle Scholar
  51. 51.
    Millenaar, F. F., Benschop, J. J., Wagner, A. M., and Lambers, H. (1998) Plant Physiol., 118, 599–607.PubMedCrossRefGoogle Scholar
  52. 52.
    Maxwell, D. P., Wang, Y., and McIntosh, L. (1999) Proc. Natl. Acad. Sci. USA, 96, 8271–8276.PubMedCrossRefGoogle Scholar
  53. 53.
    Popov, V. N., Purvis, A. C., Skulachev, V. P., and Wagner, A. M. (2001) Biosci. Rep., 21, 369–379.PubMedCrossRefGoogle Scholar
  54. 54.
    Landi, L., Carbini, L., Sechi, A. M., and Pasquali, P. (1984) Biochem. J., 222, 463–466.PubMedGoogle Scholar
  55. 55.
    Frei, B., Kim, M. C., and Ames, B. N. (1990) Proc. Natl. Acad. Sci. USA, 87, 4879–4883.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Donnell, V. B., Tew, D. G., Jones, O. T. G., and England, P. J. (1993) Biochem. J., 290, 41–49.PubMedGoogle Scholar
  57. 57.
    Lambeth, J. D. (2004) Nature Rev. Immunol., 4, 181–189.CrossRefGoogle Scholar
  58. 58.
    Li, W.-G., Miller, F. J., Zhang, H. J., Spitz, D. R., Oberley, L. W., and Weintraub, N. L. (2001) J. Biol. Chem., 276, 29251–29256.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. A. Vasil’ev
    • 1
  • E. V. Dzyubinskaya
    • 1
  • R. A. Zinovkin
    • 1
    • 2
  • D. B. Kiselevsky
    • 1
  • N. V. Lobysheva
    • 2
  • V. D. Samuilov
    • 1
    Email author
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations