Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 9, pp 1009–1020 | Cite as

Bridged oligonucleotides as molecular probes for investigation of enzyme-substrate interaction and allele-specific analysis of DNA

  • I. A. Pyshnaya
  • O. A. Vinogradova
  • M. R. Kabilov
  • E. M. Ivanova
  • D. V. PyshnyiEmail author
Article

Abstract

The efficiency of enzymatic conversion of DNA complexes containing non-nucleotide inserts has been studied. T4 DNA ligase and Taq DNA polymerase have been included in the study as examples of widely used DNA-dependent enzymes. A series of substrate DNA complexes have been formed using native oligonucleotides and bridged ones bearing non-nucleotide inserts based on phosphodiesters of di-, tetra-, or hexaethylene glycol, 1,5-pentanediol, 1,10-decanediol, and 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran. The perturbation in DNA located far from the site of the enzyme action had almost no influence on the substrate properties of the complex, while insertion near this site significantly deteriorated them. The use of a series of modified duplexes allows one to locate the position of the enzyme-binding site on DNA substrate with the accuracy of 1–2 nucleotides. The presence of a non-nucleotide insert in the complex has been also shown to enhance the efficiency of single mismatch discrimination upon both template-directed ligation and extension of oligonucleotides.

Key words

bridged oligonucleotides non-nucleotide insert modified DNA complexes footprinting binding site selectivity T4 DNA ligase Taq DNA polymerase 

Abbreviations

aa

amino acid residues

AU

activity units

NA

nucleic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Toulme, J. J. (1992) in Antisense RNA and DNA (Murray, J. A. H., ed.) Wiley-Liss, N. Y., pp. 175–194.Google Scholar
  2. 2.
    Vorobjev, P. E., Pyshnaya, I. A., Pyshnyi, D. V., Venyaminova, A. G., Ivanova, E. M., Zarytova, V. F., Bonora, G. M., Scalfi-Happ, C., and Seliger, S. (2001) Antisense Nucleic Acid Drug Dev., 11, 77–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Koshkin, A. A., Singh, S. K., Nielsen, P., Rajwanshi, V. K., Kumar, R., Meldgaard, M., Olsen, C. E., and Wengel, J. (1998) Tetrahedron, 54, 3607–3630.CrossRefGoogle Scholar
  4. 4.
    Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., and Havelda, Z. (2004) Nucleic Acids Res., 32, e175.PubMedCrossRefGoogle Scholar
  5. 5.
    Gallo, M., Montserrat, J. M., and Iribarren, A. M. (2003) Braz. J. Med. Biol. Res., 36, 143–151.PubMedCrossRefGoogle Scholar
  6. 6.
    Nguyen, H. K., Auffray, P., Asseline, U., Dupret, D., and Thuong, N. T. (1997) Nucleic Acids Res., 25, 3059–3065.PubMedCrossRefGoogle Scholar
  7. 7.
    Nguyen, H. K., Bonfils, E., Auffray, P., Costaglioli, P., Schmitt, P., Asseline, U., Durand, M., Maurizot, J. C., Dupret, D., and Thuong, N. T. (1998) Nucleic Acids Res., 26, 4249–4258.PubMedCrossRefGoogle Scholar
  8. 8.
    Gutierrez, A. J., Matteucci, M. D., Grant, D., Matsumura, S., Wagner, R. W., and Froehler, B. C. (1997) Biochemistry, 36, 743–748.PubMedCrossRefGoogle Scholar
  9. 9.
    Seela, F., and Becher, G. (2001) Nucleic Acids Res., 29, 2069–2078.PubMedCrossRefGoogle Scholar
  10. 10.
    Freier, S. M., and Altmann, K. H. (1997) Nucleic Acids Res., 25, 4429–4443.PubMedCrossRefGoogle Scholar
  11. 11.
    Giusto, D. A. D., and King, G. C. (2004) Nucleic Acids Res., 32, e32.PubMedCrossRefGoogle Scholar
  12. 12.
    Tews, B., Wilhelm, J., Summerer, D., Strerath, M., Marx, A., Friedhoff, P., Pingoud, A., and Hahn, M. (2003) Biol. Chem., 384, 1533–1541.PubMedCrossRefGoogle Scholar
  13. 13.
    Strerath, M., Gaster, J., Summerer, D., and Marx, A. (2004) Chembiochem, 5, 333–339.PubMedCrossRefGoogle Scholar
  14. 14.
    Borisova, O. F., Shchelkina, A. K., Timofeev, E. N., and Florent’ev, V. L. (1995) Mol. Biol. (Moscow), 29, 1076–1085.Google Scholar
  15. 15.
    Ma, M. Y. X., McCallum, K., Climie, S. C., Kuperman, R., Lin, W. C., Sumner-Smith, M., and Barnet, R. W. (1993) Nucleic Acids Res., 21, 2585–2589.CrossRefGoogle Scholar
  16. 16.
    Kozlov, I. A., Ivanovskaia, M. G., Kubareva, E. A., Volkov, E. M., and Shabarova, Z. A. (1996) Mol. Biol. (Moscow), 30, 852–863.Google Scholar
  17. 17.
    Amaratunga, M., and Lohman, T. M. (1993) Biochemistry, 32, 6815–6820.PubMedCrossRefGoogle Scholar
  18. 18.
    Pasman, Z., and Garcia-Blanco, M. (1996) Nucleic Acids Res., 24, 1638–1645.PubMedCrossRefGoogle Scholar
  19. 19.
    Tian, L., Sayer, J. M., Jerina, D. M., and Shuman, S. (2004) J. Biol. Chem., 279, 39718–39726.PubMedCrossRefGoogle Scholar
  20. 20.
    Pyshnyi, D. V., Lomzov, A. A., Pyshnaya, I. A., and Ivanova, E. M. (2006) J. Biomol. Struct. Dyn., 26, 567–579.Google Scholar
  21. 21.
    Lomzov, A. A., Pyshnaya, I. A., Ivanova, E. M., and Pyshnyi, D. V. (2006) Dokl. Biochem. Biophys., 409, 211–215.PubMedCrossRefGoogle Scholar
  22. 22.
    Pyshnaya, I. A., Pyshnyi, D. V., Ivanova, E. M., Zarytova, V. F., Bonora, G. M., Scalfi Happ, C., and Seliger, H. (1998) Nucleosides Nucleotides, 17, 1289–1297.CrossRefGoogle Scholar
  23. 23.
    Mangos, M. M., Min, K. L., Viazovkina, E., Galarneau, A., Elzagheid, M. I., Parniak, M. A., and Damha, M. J. (2003) J. Am. Chem. Soc., 125, 654–661.PubMedCrossRefGoogle Scholar
  24. 24.
    Pyshnyi, D. V., Ivanova, E. M., Pyshnaya, I. A., and Zarytova, V. F. RF Patent No. 2259402, 27.08.2005.Google Scholar
  25. 25.
    Vinogradova, O. A., Pyshnaya, I. A., Zarytova, V. F., Ivanova, E. M., and Pyshnyi, D. V. (2007) Mol. Biol. (Moscow), 41, 163–172.Google Scholar
  26. 26.
    Durand, M., Chevrie, K., Chassignol, M., Thuong, N. T., and Maurizot, J. C. (1990) Nucleic Acids Res., 18, 6353–6359.PubMedCrossRefGoogle Scholar
  27. 27.
    Richards, E. G. (1975) in Handbook of Biochemistry and Molecular Biology: Nucleic Acids, Vol. 1 (Fasman, G. D., ed.) CRC Press, Clevland, p. 589.Google Scholar
  28. 28.
    Lokhov, S. G., and Pyshnyi, D. V. (1997) FEBS Lett., 420, 134–138.PubMedCrossRefGoogle Scholar
  29. 29.
    Berkner, K. L., and Folk, W. R. (1977) J. Biol. Chem., 252, 3176–3184.PubMedGoogle Scholar
  30. 30.
    Pyshnyi, D. V., Skobel’tsyna, L. M., Gushchina, E. N., Pyshnaya, I. A., Shishkina, I. G., Dymshits, G. M., Zarytova, V. F., and Ivanova, E. M. (2000) Mol. Biol. (Moscow), 34, 984–997.Google Scholar
  31. 31.
    Pyshnyi, D. V., Pyshnaya, I. A., Levina, A. S., Goldberg, E. L., Zarytova, V. F., Knorre, D. G., and Ivanova, E. M. (2001) J. Biomol. Struct. Dyn., 19, 555–570.PubMedGoogle Scholar
  32. 32.
    Pyshnyi, D. V., Krivenko, A. A., Lokhov, S. G., Ivanova, E. M., Dymshits, G. M., and Zarytova, V. F. (1998) Bioorg. Khim., 24, 32–37.PubMedGoogle Scholar
  33. 33.
    Wu, D. Y., and Wallace, R. B. (1989) Gene, 76, 245–254.PubMedCrossRefGoogle Scholar
  34. 34.
    Landegren, U., Kaiser, R., Sanders, J., and Hood, L. (1988) Science, 241, 1077–1080.PubMedCrossRefGoogle Scholar
  35. 35.
    Cherepanov, A. V., and de Vries, S. (2002) J. Biochem., 132, 143–147.PubMedGoogle Scholar
  36. 36.
    Rice, J. A., and Crothers, D. M. (1989) Biochemistry, 28, 4512–4516.PubMedCrossRefGoogle Scholar
  37. 37.
    Kalnik, M. W., Chang, C. N., Johnson, F., Grollman, A. P., and Patel, D. J. (1989) Biochemistry, 28, 3373–3383.PubMedCrossRefGoogle Scholar
  38. 38.
    Doherty, A. J., and Dafforn, T. R. (2000) J. Mol. Biol., 296, 43–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Odell, M., and Shuman, S. (1999) J. Biol. Chem., 274, 14032–14039.PubMedCrossRefGoogle Scholar
  40. 40.
    Ng, P. S., and Bergstrom, D. E. (2004) Nucleic Acids Res., 32, e107.PubMedCrossRefGoogle Scholar
  41. 41.
    Eom, S. H., Wang, J., and Steitz, T. A. (1996) Nature, 382, 278–281.PubMedCrossRefGoogle Scholar
  42. 42.
    Li, Y., Korolev, S., and Waksman, G. (1998) EMBO J., 17, 7514–7525.PubMedCrossRefGoogle Scholar
  43. 43.
    Drutsa, V. L., Bednarek, P. Z., and Koroleva, O. N. (1994) Bioorg. Khim., 20, 1206–1217.PubMedGoogle Scholar
  44. 44.
    Clark, J. M. (1988) Nucleic Acids Res., 16, 9677–9686.PubMedCrossRefGoogle Scholar
  45. 45.
    Cherepanov, A. V., and de Vries, S. (2002) Eur. J. Biochem., 269, 5993–5999.PubMedCrossRefGoogle Scholar
  46. 46.
    Nair, P. A., Nandakumar, J., Smith, P., Odell, M., Lima, C. D., and Shuman, S. (2007) Nat. Struct. Mol. Biol., 14, 770–778.PubMedCrossRefGoogle Scholar
  47. 47.
    Wlassoff, W. A., Dymshits, G. M., and Lavrik, O. I. (1996) FEBS Lett., 390, 6–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Zykova, E. S., Patrushev, L. I., Kaiushin, A. L., Korosteleva, M. D., Miroshnikov, A. I., Bokarev, I. N., Leont’ev, S. G., Koshkin, V. M., and Severin, E. S. (1997) Bioorg. Khim., 23, 205–210.PubMedGoogle Scholar
  49. 49.
    Giusto, D. D., and King, G. C. (2003) Nucleic Acids Res., 31, e7.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. A. Pyshnaya
    • 1
  • O. A. Vinogradova
    • 1
  • M. R. Kabilov
    • 1
  • E. M. Ivanova
    • 1
  • D. V. Pyshnyi
    • 1
    • 2
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Division of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations