Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 9, pp 986–993 | Cite as

High-sensitivity express immunochromatographic method for detection of plant infection by tobacco mosaic virus

  • Yu. F. DryginEmail author
  • A. N. Blintsov
  • A. P. Osipov
  • V. G. Grigorenko
  • I. P. Andreeva
  • A. I. Uskov
  • Yu. A. Varitsev
  • B. V. Anisimov
  • V. K. Novikov
  • J. G. Atabekov
Article

Abstract

A highly sensitive express immunochromatography method for molecular diagnosis of plant virus infections was elaborated on the example of a model object — tobacco mosaic virus (TMV). The analysis time does not exceed 5 min, and the lower limit of TMV detection in non-clarified leaf extract (2–4 ng/ml) is comparable with the sensitivity of the enzyme-linked immunosorbent assay of the virus. A single measurement requires 0.1–0.2 ml tested solution (extract from 10–20 mg of leaf material). The sensitivity of TMV determination in the leaf tissue extract was increased by more than one order of magnitude using signal enhancement by silver and is 0.1 ng/ml. In this case, analysis time did not exceed 25 min. The simplicity of this method makes it especially convenient in express diagnosis of numerous analyzed specimens. The prototype of a diagnostic kit for serial analyses of plant viral infections both in laboratory and field conditions was elaborated.

Key words

tobacco mosaic virus immunochromatography analysis colloidal gold lateral flow immune analysis 

Abbreviations

ABTS

2,2′-azinobis(3-ethylbenzthiazolinesulfonic acid)

ELISA

enzyme-linked immunosorbent assays

HRP

horseradish peroxidase

IChA

immunochromatography analysis

IgG-Au

antibody conjugate with colloidal aurum

IgG-HRP

antibody conjugate with horseradish peroxidase

TMV

tobacco mosaic virus

TPB

0.01 M K-phosphate buffer, pH 7.4, 0.1 M NaCl, 0.1% Triton X-100

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gosling, J. P. (ed.) (2000) Immunoassays: A Practical Approach, Oxford University Press, Oxford.Google Scholar
  2. 2.
    Egorov, A. M., Osipov, A. P., Dzantiev, B. B., and Gavrilova, E. M. (1991) The Theory and Practice of Immunoenzyme Analysis [in Russian], Vysshaya Shkola, Moscow.Google Scholar
  3. 3.
    Wong, R., and Tse, H. (eds.) (2009) Lateral Flow Immunoassay, Humana Press, N. Y.Google Scholar
  4. 4.
    O’Farrell, B., and Bauer, J. T. (2006) IVD Technol., 12, 41–46.Google Scholar
  5. 5.
    Shim, W. B., Dzantiev, B. B., Eremin, S. A., and Chung, D. H. (2009) J. Microbiol. Biotechnol., 19, 83–92.PubMedGoogle Scholar
  6. 6.
    Atabekov, I. G. (ed.) (2002) A Laboratory Course on General Virology [in Russian], Moscow State University Publishing House, Moscow.Google Scholar
  7. 7.
    Proll, E., and Richter, J. (1979) Arch. Phytopathol. PflSchutz. (Berlin), 15, 233–245.Google Scholar
  8. 8.
    Francki, R. I. B., and McLean, G. (1968) Aust. J. Biol. Sci., 21, 1311–1318.PubMedGoogle Scholar
  9. 9.
    Moghal, S. M., and Francki, R. I. B. (1976) Virology, 73, 350–362.PubMedCrossRefGoogle Scholar
  10. 10.
    Fribourg, C. E., and de Zoeten, G. A. (1970) Phytopathology, 60, 1420–1421.CrossRefGoogle Scholar
  11. 11.
    Takanami, T., and Kubo, S. (1979) J. Gen. Virol., 44, 153–159.CrossRefGoogle Scholar
  12. 12.
    Harlow, E., and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, N. Y., pp. 392–393.Google Scholar
  13. 13.
    Dar, V. S., Ghosh, S., and Broor, S. (1994) J. Virol. Meth., 47, 51–58.CrossRefGoogle Scholar
  14. 14.
    Bogatyrev, V. A., Dykman, L. A., Khlebtsov, B. N., and Khlebtsov, N. G. (2004) Optika Spektrosk., 96, 139–147.Google Scholar
  15. 15.
    Sushko, A. D. (2007) Fotonika, No. 5, 14–19.Google Scholar
  16. 16.
    Gnutova, R. V., and Krylov, A. V. (1975) Acta Phytopathol. Acad. Sci. Hung., 10, 203–209.Google Scholar
  17. 17.
    Erokhina, T. N., Ambrosova, S. M., Varitsev, Yu. A., Malofeeva, Yu. S., Knyazeva, V. P., and Kulyavtsev, A. V. (1993) Bioorg. Khim., 19, 941–949.Google Scholar
  18. 18.
    Hill, I. N., and Shephered, R. I. (1972) Virology, 47, 817–822.PubMedCrossRefGoogle Scholar
  19. 19.
    Watson, J. D. (1954) Biochim. Biophys. Acta, 3, 10–19.CrossRefGoogle Scholar
  20. 20.
    Matthews, R. E. F. (1973) Plant Virology [Russian translation] (Atabekov, J. G., ed.) Mir, Moscow.Google Scholar
  21. 21.
    Berezin, I. V. (1976) Immobilized Enzymes. Current State and Perspectives [in Russian], Vol. 2, Moscow State University Publishing House, Moscow.Google Scholar
  22. 22.
    Zubtsov, D. A., et al. (2006) J. Biotechnol., 122, 16–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Gorovits, B. M., et al. (1993) J. Immunol. Meth., 157, 11–17.CrossRefGoogle Scholar
  24. 24.
    Dykman, L. A., and Bogatyrev, V. A. (1997) Biochemistry (Moscow), 62, 350–356.Google Scholar
  25. 25.
    Holmberg, K., Jensson, B., Kronberg, B., and Lindman, B. (2007) Surface-Active Substances and Polymers in Aqueous Solutions [Russian translation], Binomial, Laboratory of Knowledge, Moscow.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. F. Drygin
    • 1
    Email author
  • A. N. Blintsov
    • 2
  • A. P. Osipov
    • 3
  • V. G. Grigorenko
    • 3
  • I. P. Andreeva
    • 4
  • A. I. Uskov
    • 5
  • Yu. A. Varitsev
    • 5
  • B. V. Anisimov
    • 5
  • V. K. Novikov
    • 2
  • J. G. Atabekov
    • 1
    • 2
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  4. 4.ZAO NVO ImmunotechLomonosov Moscow State UniversityMoscowRussia
  5. 5.All-Russian Potato Research InstituteKraskovo-1, Moscow RegionRussia

Personalised recommendations