Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 8, pp 933–937 | Cite as

Nonaqueous titration of amino groups in polymeric matrix of plant cell walls

  • N. R. MeychikEmail author
  • Yu. I. Nikolaeva
  • I. P. Ermakov
Article

Abstract

Nonaqueous titration was used for detection of free amino groups in the polymeric matrix of plant cell walls. The content of amino groups varied in the range 0.54–0.91 and total nitrogen in the range 1.0–4.2 mmol per gram dry mass of cell walls depending on the plant species. However, these data on the high content of free amino groups do not correlate with the present day concept that the nitrogen fraction in charged amino groups in plant cell wall proteins, which are assumed to be mainly amino groups of lysine and arginine residues, is about 10%. It is supposed that most detected free amino groups belong to the hydroxy-amino acids hydroxyproline and tyrosine that can be bound at the hydroxyl group with the carbohydrate part of glycoprotein or another structural cell wall polymer.

Key words

amino groups cell wall plant roots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fry, S. C. (2004) New Phytologist, 161, 641–675.CrossRefGoogle Scholar
  2. 2.
    Gorshkova, T. A. (2007) Plant Cell Wall as Dynamic System [in Russian], Nauka, Moscow.Google Scholar
  3. 3.
    Zeier, J., Goll, A., Yokoyama, M., Karahara, I., and Schreiber, L. (1999) Plant, Cell Environ., 22, 271–279.CrossRefGoogle Scholar
  4. 4.
    Shiga, T. M., Lajolo, F. V., and Filisetti, T. M. C. C. (2003) Cienc. Technol. Aliment., 23, 141–148.Google Scholar
  5. 5.
    Gassab, G. I. (1998) Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 281–309.CrossRefGoogle Scholar
  6. 6.
    Gassab, G. I., and Varner, J. E. (1988) Annu. Rev. Plant Physiol. Plant Mol. Biol., 39, 321–353.CrossRefGoogle Scholar
  7. 7.
    Feiz, L., Irshad, M., Pont-Lezica, R. F., Canut, H., and Jamet, E. (2006) Plant Method, 2, 10–22.CrossRefGoogle Scholar
  8. 8.
    Jamet, E., Canut, H., Boudart, G., and Pont-Lezica, R. F. (2006) Trends Plant Sci., 11, 33–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Sharova, E. I. (2004) in Plant Cell Wall, St. Petersburg State University Publishing, St. Petersburg.Google Scholar
  10. 10.
    Baslavskaya, S. S., and Trubetskova (1964) in Practical Course on Plant Physiology [in Russian], Moscow State University Publishing, Moscow.Google Scholar
  11. 11.
    Robinson, S. P., and Dountov, S. D. (1985) Austr. J. Plant Physiol., 12, 471–479.CrossRefGoogle Scholar
  12. 12.
    Meychik, N. R., Ermakov, I. P., and Savvateeva, M. V. (1999) Plant Physiol. (Moscow), 46, 742–747.Google Scholar
  13. 13.
    Meychik, N. R., and Yermakov, I. P. (1999) Plant & Soil, 217, 257–264.CrossRefGoogle Scholar
  14. 14.
    Meychik, N. R., Matveeva, N. P., Nikolaeva, Yu. I., Chaikova, A. V., and Yermakov, I. P. (2006) Biochemistry (Moscow), 71, 893–899.CrossRefGoogle Scholar
  15. 15.
    Cheronis, N. D., and Ma, T. S. (1973) in Micro- and Semimicromethods of Organic Functional Analysis [Russian translation], Khimiya, Moscow.Google Scholar
  16. 16.
    Feofilova, E. P. (1983) in Cell Wall of Fungi [in Russian], Nauka, Moscow.Google Scholar
  17. 17.
    Talmadge, K. W., Keegstra, K., Bauer, W. D., and Albersheim, P. (1973) Plant Physiol., 51, 158–173.PubMedCrossRefGoogle Scholar
  18. 18.
    Richter, C., and Dainty, J. (1989) Can. J. Bot., 67, 460–465.CrossRefGoogle Scholar
  19. 19.
    Brady, J. D., Sadler, I. H., and Fry, S. C. (1996) Biochem. J., 315, 323–327.PubMedGoogle Scholar
  20. 20.
    Brady, J. D., Sadler, I. H., and Fry, S. C. (1998) Phytochemistry, 47, 349–353.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. R. Meychik
    • 1
    Email author
  • Yu. I. Nikolaeva
    • 1
  • I. P. Ermakov
    • 1
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations