Biochemistry (Moscow)

, Volume 74, Issue 8, pp 903–909 | Cite as

Drought-induced changes in photosynthetic membranes of two wheat (Triticum aestivum L.) cultivars

  • I. M. Huseynova
  • S. Y. Suleymanov
  • S. M. Rustamova
  • J. A. Aliyev


Two wheat (Triticum aestivum L.) cultivars contrasting in architectonics and differing in drought resistance, Azamatli-95 (short stature, vertically oriented small leaves, drought-tolerant) and Giymatli-2/17 (short stature, broad and drooping leaves, drought-sensitive), were studied. It was found that the content of CP I (115 kDa) and 63-kDa apoprotein P700 and also LHC II polypeptides increases slightly in the drought-resistant cv. Azamatli-95 under extreme water supply limitation, while their content decreases in drought-sensitive cv. Giymatli-2/17. The intensity of synthesis of α- and β-subunits of CF1 (55 and 53.5 kDa) and 33–30.5 kDa proteins also decreases in the sensitive genotype. The intensity of short wavelength peaks at 687 and 695 nm sharply increases in the fluorescence spectra (77K) of chloroplasts from Giymatli-2/17 under water deficiency, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. After exposure to drought, cv. Giymatli-2/17 shows a larger reduction in the actual PS II photochemical efficiency of chloroplasts than cv. Azamatli-95.

Key words

wheat genotypes photosynthetic membrane proteins fluorescence photosystems water stress 




CP 43 and CP 47

core antennas of PS II




light-harvesting complex


light-harvesting complex of PS I(II)


lipid peroxidation


methyl viologen


photosystem I(II)


reactive oxygen species


relative water content


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bray, E. A. (1997) Trends Plant Sci., 2, 48–54.CrossRefGoogle Scholar
  2. 2.
    Rizhsky, L., Liang, H., and Mittler, R. (2002) Plant Physiol., 130, 1143–1151.PubMedCrossRefGoogle Scholar
  3. 3.
    Aliev, J. A. (1998) Photosynthesis: Mechanisms and Effects (Garab, G., ed.) Vol. 5, Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 3829–3832.Google Scholar
  4. 4.
    Aliev, J. A. (2001) Wheat in a Global Environment (Bedo, Z., and Lang, L., eds.) Vol. 9, Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 693–698.Google Scholar
  5. 5.
    Sherwin, H. W., and Farrant, J. M. (1998) Growth Regul., 24, 203–210.CrossRefGoogle Scholar
  6. 6.
    Loggini, B., Scartazza, A., Brugnoli, E., and Navari-Izzo, F. (1999) Plant Physiol., 119, 1091–1098.PubMedCrossRefGoogle Scholar
  7. 7.
    Asada, K. (2006) Plant Physiol., 141, 391–396.PubMedCrossRefGoogle Scholar
  8. 8.
    Breusegem, F., and Dat, J. (2006) Plant Physiol., 141, 384–390.PubMedCrossRefGoogle Scholar
  9. 9.
    Navari-Izzo, F., Quartacci, M. F., Pinzino, C., Rascio, N., Vazzana, C., and Sgherri, C. L. M. (2000) Plant Physiol., 124, 1427–1436.PubMedCrossRefGoogle Scholar
  10. 10.
    Mi, H.-L., Xu, X., Li, S.-H., He, J., Zhang, Y.-P., Zhao, T.-C., and Ma, Y.-M. (2004) Acta Bot. Boreali-Occident. Sci., 24, 1816–1821.Google Scholar
  11. 11.
    Quartacci, M. F., Pinzino, C., Sgherri, C. L. M., and Navari-Izzo, F. (1995) Plant Physiol., 108, 191–197.PubMedGoogle Scholar
  12. 12.
    Tambussi, E. A., Nogues, S., and Araus, J. L. (2005) Planta, 221, 446–458.PubMedCrossRefGoogle Scholar
  13. 13.
    Aliyev, J. A., Suleymanov, S. Y., Guseinova, I. M., Asadov, A. A., and Ismailov, M. A. (1992) Biokhimiya, 57, 679–686.Google Scholar
  14. 14.
    Mc-Kinney, G. (1941) J. Biol. Chem., 140, 315–322.Google Scholar
  15. 15.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  16. 16.
    Asadov, A. A., Zulfugarov, I. S., Suleymanov, S. Y., and Aliyev, J. A. (1986) DAN SSSR, 287, 444–447.Google Scholar
  17. 17.
    Guseinova, I. M., Suleymanov, S. Y., and Aliyev, J. A. (2001) J. Biochem. Mol. Biol., 34, 496–501.Google Scholar
  18. 18.
    Klimov, V. V., Allakhverdiev, S. I., Shuvalov, V. A., and Krasnovsky, A. A. (1982) FEBS Lett., 148, 307–312.CrossRefGoogle Scholar
  19. 19.
    Moran, J. F., Becana, M., Iturbe-Ormaetyl, I., Frechilla, S., Klucas, R. V., and Aparicio-Tejo, P. (1994) Planta, 194, 346–352.CrossRefGoogle Scholar
  20. 20.
    Wisnewski, M., Webb, R., Balsamo, R., Close, T. J., Yu, X-M., and Griffith, M. (1999) Physiol. Plant., 105, 600–608.CrossRefGoogle Scholar
  21. 21.
    Close, T. J. (1997) Physiol. Plant., 100, 291–296.CrossRefGoogle Scholar
  22. 22.
    Giardi, M. T., Cona, A., Kucera, T., Masojidek, J., and Mattoo, A. K. (1995) in Proc. Int. Congr. Integrated Studies on Drought Tolerance of Higher Plants “Inter Drought 95”, pp. 1–5.Google Scholar
  23. 23.
    Guseynova, I. M., Suleymanov, S. Y., and Aliyev, J. A. (2006) Biochemistry (Moscow), 71, 173–177.CrossRefGoogle Scholar
  24. 24.
    Masojidek, J., Trivedi, S., Halshaw, L., Alexiou, A., and Hall, D. O. (1991) Plant Physiol., 96, 198–207.PubMedCrossRefGoogle Scholar
  25. 25.
    Gillet, B., Beyly, A., Peltier, G., and Rey, P. (1998) The Plant J., 16, 257–262.CrossRefGoogle Scholar
  26. 26.
    Pruvot, G., Cuine, S., Peltier, G., and Rey, P. (1996) Planta, 198, 471–479.PubMedCrossRefGoogle Scholar
  27. 27.
    Rey, P., Pruvot, G., Becuwe, N., Eymery, F., Rumeau, D., and Peltier, G. (1998) Plant J., 13, 97–107.PubMedCrossRefGoogle Scholar
  28. 28.
    Monte, E., Ludevid, D., and Prat, S. (1999) The Plant J., 19, 399–410.CrossRefGoogle Scholar
  29. 29.
    Sippola, K., Kanervo, E., Murata, N., and Aro, E.-M. (1998) Eur. J. Biochem., 251, 641–648.PubMedCrossRefGoogle Scholar
  30. 30.
    Pshibytko, N. L., Kalitukho, L. N., and Kabashnikova, L. F. (2003) Russ. J. Plant Physiol., 50, 51–58.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. M. Huseynova
    • 1
  • S. Y. Suleymanov
    • 1
  • S. M. Rustamova
    • 1
  • J. A. Aliyev
    • 1
  1. 1.Institute of BotanyNational Academy of SciencesBakuAzerbaijan

Personalised recommendations