Biochemistry (Moscow)

, Volume 74, Issue 8, pp 874–881 | Cite as

Studies on functional role of DNA methylation within the FXYD5-COX7A1 region of human chromosome 19

  • Y. V. Skvortsova
  • T. L. AzhikinaEmail author
  • E. A. Stukacheva
  • E. D. Sverdlov


We used the Rapid Identification of Genomic Splits technique to get a detailed methylation landscape of a 1-megabase-long human genome region (FXYD5-COX7A1, chromosome 19) in normal and tumor lung tissues and in the A549 lung cancer cell line. All three samples were characterized by an essentially uneven density of unmethylated sites along the fragment. Strikingly enough, the distribution of hypomethylated regions did not correlate with gene locations within the fragment. We also demonstrated that the methylation pattern of this long genomic DNA fragment was rather stable and practically unchanged in human lung cancer tissue as compared with its normal counterpart. On the other hand, the methylation landscape obtained for the A549 cell line (human lung carcinoma) in the USF2-MAG locus showed clear differences from that of the tissues mentioned above. A comparative analysis of transcriptional activity of the genes in this region demonstrated the general absence of direct correlation between methylation and expression, although some data suggest a possible role of methylation in the regulation of MAG expression through cis-regulatory elements. In total, our data provide new evidence for the necessity of revising currently prevailing views on the functional significance of methyl groups in genomic DNA.

Key words

methylation profile regulation of gene expression MAG HAMP 





melting temperature


trichostatin A


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eden, S., and Cedar, H. (1994) Curr. Opin. Genet. Dev., 4, 255–259.PubMedCrossRefGoogle Scholar
  2. 2.
    Holmgren, C., Kanduri, C., Dell, G., Ward, A., Mukhopadhya, R., Kanduri, M., Lobanenkov, V., and Ohlsson, R. (2001) Curr. Biol., 11, 1128–1130.PubMedCrossRefGoogle Scholar
  3. 3.
    Prendergast, G. C., Lawe, D., and Ziff, E. B. (1991) Cell, 65, 395–407.PubMedCrossRefGoogle Scholar
  4. 4.
    Campanero, M. R., Armstrong, M. I., and Flemington, E. K. (2000) Proc. Natl. Acad. Sci. USA, 97, 6481–6486.PubMedCrossRefGoogle Scholar
  5. 5.
    Kirillov, A., Kistler, B., Mostoslavsky, R., Cedar, H., Wirth, T., and Bergman, Y. (1996) Nat. Genet., 13, 435–441.PubMedCrossRefGoogle Scholar
  6. 6.
    Bird, A. P., and Wolffe, A. P. (1999) Cell, 99, 451–454.PubMedCrossRefGoogle Scholar
  7. 7.
    Clark, S. J. (2007) Hum. Mol. Genet., 16, (Spec. No. 1), R88–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki, M. M., and Bird, A. (2008) Nat. Rev. Genet., 9, 465–476.PubMedCrossRefGoogle Scholar
  9. 9.
    Azhikina, T., Gainetdinov, I., Skvortsova, Y., Batrak, A., Dmitrieva, N., and Sverdlov, E. (2004) Mol. Genet. Genom., 271, 22–32.CrossRefGoogle Scholar
  10. 10.
    Azhikina, T., Gainetdinov, I., Skvortsova, Y., and Sverdlov, E. (2006) Mol. Genet. Genom., 275, 615–622.CrossRefGoogle Scholar
  11. 11.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.Google Scholar
  12. 12.
    Olek, A., Oswald, J., and Walter, J. (1996) Nucleic Acids Res., 24, 5064–5066.PubMedCrossRefGoogle Scholar
  13. 13.
    Orlando, V. (2000) Trends Biochem. Sci., 25, 99–104.PubMedCrossRefGoogle Scholar
  14. 14.
    Antequera, F. (2003) Cell Mol. Life Sci., 60, 1647–1658.PubMedCrossRefGoogle Scholar
  15. 15.
    Chernov, I. P., Akopov, S. B., Nikolaev, L. G., and Sverdlov, E. D. (2006) Biotechniques, 41, 91–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Esteller, M. (2000) Eur. J. Cancer, 36, 2294–2300.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu, J., and Yao, X. (2007) J. Biochem. Mol. Biol., 40, 135–141.PubMedGoogle Scholar
  18. 18.
    Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., Burton, J., Cox, T. V., Davies, R., Down, T. A., et al. (2006) Nat. Genet., 38, 1378–1385.PubMedCrossRefGoogle Scholar
  19. 19.
    Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., and Schubeler, D. (2005) Nat. Genet., 37, 853–862.PubMedCrossRefGoogle Scholar
  20. 20.
    Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., Riggs, A. D., and Pfeifer, G. P. (2008) Proc. Natl. Acad. Sci. USA, 105, 252–257.PubMedCrossRefGoogle Scholar
  21. 21.
    Feinberg, A. P., and Tycko, B. (2004) Nat. Rev. Cancer, 4, 143–153.PubMedCrossRefGoogle Scholar
  22. 22.
    Novak, P., Jensen, T., Oshiro, M. M., Wozniak, R. J., Nouzova, M., Watts, G. S., Klimecki, W. T., Kim, C., and Futscher, B. W. (2006) Cancer Res., 66, 10664–10670.PubMedCrossRefGoogle Scholar
  23. 23.
    Berger, S. L. (2007) Nature, 447, 407–412.PubMedCrossRefGoogle Scholar
  24. 24.
    Attema, J. L., Papathanasiou, P., Forsberg, E. C., Xu, J., Smale, S. T., and Weissman, I. L. (2007) Proc. Natl. Acad. Sci. USA, 104, 12371–12376.PubMedCrossRefGoogle Scholar
  25. 25.
    Agarwal, N., Hardt, T., Brero, A., Nowak, D., Rothbauer, U., Becker, A., Leonhardt, H., and Cardoso, M. C. (2007) Nucleic Acids Res., 35, 5402–5408.PubMedCrossRefGoogle Scholar
  26. 26.
    Wu, J., Wang, S. H., Potter, D., Liu, J. C., Smith, L. T., Wu, Y. Z., Huang, T. H., and Plass, C. (2007) BMC Genomics, 8, 131.PubMedCrossRefGoogle Scholar
  27. 27.
    Vetchinova, A. S., Akopov, S. B., Chernov, I. P., Nikolaev, L. G., and Sverdlov, E. D. (2006) Anal. Biochem., 354, 85–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Mukhopadhyay, R., Yu, W., Whitehead, J., Xu, J., Lezcano, M., Pack, S., Kanduri, C., Kanduri, M., Ginjala, V., Vostrov, A., et al. (2004) Genome Res., 14, 1594–1602.PubMedCrossRefGoogle Scholar
  29. 29.
    Renaud, S., Loukinov, D., Abdullaev, Z., Guilleret, I., Bosman, F. T., Lobanenkov, V., and Benhattar, J. (2007) Nucleic Acids Res., 35, 1245–1256.PubMedCrossRefGoogle Scholar
  30. 30.
    Grubinska, B., Laszkiewicz, I., Royland, J., Wiggins, R. C., and Konat, G. W. (1994) J. Neurosci. Res., 39, 233–242.PubMedCrossRefGoogle Scholar
  31. 31.
    Laszkiewicz, I., Grubinska, B., Wiggins, R. C., and Konat, G. W. (1997) J. Neurosci. Res., 50, 928–936.PubMedCrossRefGoogle Scholar
  32. 32.
    Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992) Proc. Natl. Acad. Sci. USA, 89, 1827–1831.PubMedCrossRefGoogle Scholar
  33. 33.
    Costello, J. F., Plass, C., and Cavenee, W. K. (2002) Meth. Mol. Biol., 200, 53–70.Google Scholar
  34. 34.
    Cross, S. H., Charlton, J. A., Nan, X., and Bird, A. P. (1994) Nat. Genet., 6, 236–244.PubMedCrossRefGoogle Scholar
  35. 35.
    Zilberman, D., and Henikoff, S. (2007) Development, 134, 3959–3965.PubMedCrossRefGoogle Scholar
  36. 36.
    Slotkin, R. K., and Martienssen, R. (2007) Nat. Rev. Genet., 8, 272–285.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Y. V. Skvortsova
    • 1
  • T. L. Azhikina
    • 1
    Email author
  • E. A. Stukacheva
    • 1
  • E. D. Sverdlov
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations