Biochemistry (Moscow)

, Volume 74, Issue 8, pp 834–841 | Cite as

RNA-dependent RNA polymerase of hepatitis C virus: Study on inhibition by α,γ-diketo acid derivatives

  • M. V. KozlovEmail author
  • K. M. Polyakov
  • S. E. Filippova
  • V. V. Evstifeev
  • G. S. Lyudva
  • S. N. Kochetkov


It is supposed that α,γ-diketo acids (DKAs) inhibit the activity of hepatitis C virus RNA-dependent RNA poly-merase (RdRP HCV) via chelation of catalytic magnesium ions in the active center of the enzyme. However, DKAs display noncompetitive mode of inhibition with respect to NTP substrate, which contradicts the proposed mechanism. We have examined the NTP substrate entry channel and the active site of RdRP HCV for their possible interaction with DKAs. The substitutions R48A, K51A, and R222A greatly facilitated RdRP inhibition by DKAs and simultaneously increased K m values for UTP substrate. Interestingly, C223A was the only one of a number of substitutions that decreased K m(UTP) but facilitated the inhibitory action of DKAs. The findings allowed us to model an enzyme-inhibitor complex. According to the proposed model, DKAs introduce an additional Mg2+ ion into the active site of the enzyme at a stage of phosphodiester bond formation, which results in displacement of the NTP substrate triphosphate moiety to a catalytically inactive binding mode. This mechanism, in contrast to the currently adopted one, explains the noncompetitive mode of inhibition.

Key words

hepatitis C virus RNA-dependent RNA polymerase α,γ-diketo acid derivatives inhibition mechanism molecular modeling 



α,γ-diketo acids


hepatitis C virus RNA-dependent RNA polymerase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2009_9057_MOESM1_ESM.pdf (276 kb)
Supplementary material, approximately 340 KB.


  1. 1.
    Summa, V., Petrocchi, A., Pace, P., Matassa, V. G., de Francesco, R., Altamura, S., Tomei, L., Koch, U., and Neuner, P. (2004) J. Med. Chem., 47, 14–17.PubMedCrossRefGoogle Scholar
  2. 2.
    De Francesco, R., Tomei, L., Altamura, S., Summa, V., and Migliaccio, G. (2003) AntiViral Res., 58, 1–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Summa, V., Petrocchi, A., Matassa, V. G., Taliani, M., Laufer, R., de Francesco, R., Altamura, S., and Pace, P. (2004) J. Med. Chem., 47, 5336–5339.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu, Y., Jiang, W. W., Pratt, J., Rockway, T., Harris, K., Vasavanonda, S., Tripathi, R., Pithawalla, R., and Kati, W. M. (2006) Biochemistry, 45, 11312–11323.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim, J., Han, J. H., and Chong, Y. (2006) Bull. Korean Chem. Soc., 27, 1919–1922.CrossRefGoogle Scholar
  6. 6.
    Bressanelli, S., Tomei, L., Rey, F. A., and de Francesco, R. (2002) J. Virol., 76, 3482–3492.PubMedCrossRefGoogle Scholar
  7. 7.
    Kozlov, M. V., Polyakov, K. M., Ivanov, A. V., Filippova, S. E., Kuzyakin, A. O., Tunitskaya, V. L., and Kochetkov, S. N. (2006) Biochemistry (Moscow), 71, 1021–1026.CrossRefGoogle Scholar
  8. 8.
    Sergio, A., Tomei, L., Koch, U., Neuner, P., and Summa, V. (2002) Diketoacid-Derivatives as Inhibitors of Polymerases, US 6,492,423 B1.Google Scholar
  9. 9.
    Ivanov, A. V., Korovina, A. N., Tunitskaya, V. L., Kostyuk, D. A., Rechinsky, V. O., Kukhanova, M. K., and Kochetkov, S. N. (2006) Protein Expr. Purif., 48, 14–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Roussel, A., and Cambillau, C. (1991) Silicon Graphics Geometry Partners Directory, Mountain View, CA, USA, Silicon Graphics, p. 81.Google Scholar
  11. 11.
    Kraulis, P. J. (1991) J. Appl. Crystallogr., 24, 946–950.CrossRefGoogle Scholar
  12. 12.
    O’Farell, D., Trowbridge, R., Rowlands, D., and Jager, J. (2003) J. Mol. Biol., 326, 1025–1035.CrossRefGoogle Scholar
  13. 13.
    Ranjith-Kumar, C. T., Sarisky, R. T., Gutshall, L., Thomson, M., and Kao, C. C. (2004) J. Virol., 78, 12207–12217.PubMedCrossRefGoogle Scholar
  14. 14.
    Labonte, P., Axelrod, V., Agarval, A., Aulabaugh, A., Amin, A., and Mak, P. (2002) J. Biol. Chem., 277, 2132–2137.CrossRefGoogle Scholar
  15. 15.
    Di Santo, R., Fermeglia, M., Ferrone, M., Paneni, M. S., Costi, R., Artico, M., Roux, A., Gabriele, M., Tardif, K. D., Siddiqui, A., and Pricl, S. (2005) J. Med. Chem., 48, 6304–6314.PubMedCrossRefGoogle Scholar
  16. 16.
    Maurin, C., Bailly, F., Buisine, E., Vezin, H., Mbemba, G., Mouscadet, J. F., and Cotelle, P. (2004) J. Med. Chem., 47, 5583–5586.PubMedCrossRefGoogle Scholar
  17. 17.
    Arnold, J. J., and Cameron, C. E. (2004) Biochemistry, 43, 5126–5137.PubMedCrossRefGoogle Scholar
  18. 18.
    Castro, C., Arnold, J. J., and Cameron, C. E. (2005) Virus Res., 107, 141–149.PubMedCrossRefGoogle Scholar
  19. 19.
    Mathews, D. E., and Durbin, R. D. (1990) J. Biol. Chem., 265, 493–498.PubMedGoogle Scholar
  20. 20.
    Vassylyev, G., Svetlov, V., Vassylyeva, M. N., Perederina, A., Igarashi, N., Matsugaki, N., Wakatsuki, S., and Artsimovitch, I. (2005) Nat. Struct. Mol. Biol., 12, 1086–1093.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. V. Kozlov
    • 1
    Email author
  • K. M. Polyakov
    • 1
  • S. E. Filippova
    • 1
  • V. V. Evstifeev
    • 1
  • G. S. Lyudva
    • 1
  • S. N. Kochetkov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations