Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 6, pp 643–647 | Cite as

Synergism of ammonium and palmitic acid in uncoupling of electron transfer and ATP synthesis in chloroplasts

  • V. K. OpanasenkoEmail author
  • L. A. Vasyukhina
Article

Abstract

Uncoupling by ammonium of electron transfer and ATP synthesis during linear transfer of electrons from water to photosystem 1 acceptors was studied in pea chloroplasts. It was shown that 40 μM palmitic acid decreased several-fold the ammonium concentrations necessary for 50% inhibition of ATP synthesis. The protonophore carbonyl cyanide m-chlorophenylhydrazone has no such property. The enhancement by palmitate of ammonium-induced uncoupling is accompanied by acceleration of basal electron transfer and decrease in the photoinduced uptake of hydrogen ions (H+). In the absence of ammonium, palmitate has no effect on basal transport and stimulates uptake of hydrogen ions. This means that in the case of combined action of palmitate and ammonium an additional leakage of H+ takes place, resulting in dissipation of the pH gradient. Synergic action of two metabolites, free fatty acid and ammonium, is supposed to provide for functioning of a system of mild regulation of energy coupling processes in native plant cell chloroplasts. Possible mechanisms of synergism are discussed.

Key words

ammonium uncoupling palmitic acid electron transfer ATP synthesis chloroplasts 

Abbreviations

CCCP

carbonyl cyanide m-chlorophenylhydrazone

Chl

chlorophyll

FFA

free fatty acids

ΔH

photoinduced uptake of hydrogen ions

PA

palmitic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giersch, C. (1981) Biochem. Biophys. Res. Commun., 100, 666–674.PubMedCrossRefGoogle Scholar
  2. 2.
    Pick, U., and Weiss, M. (1988) Biochim. Biophys. Acta, 934, 22–31.CrossRefGoogle Scholar
  3. 3.
    Pick, U., Weiss, M., and Rottenberg, H. (1987) Biochemistry, 26, 8295–8302.PubMedCrossRefGoogle Scholar
  4. 4.
    Rottenberg, H. (1990) Biochim. Biophys. Acta, 1018, 1–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Skulachev, V. P. (1998) Biochim. Biophys. Acta, 1363, 100–124.PubMedCrossRefGoogle Scholar
  6. 6.
    Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., and Volkov, N. I. (1988) FEBS Lett., 226, 265–269.PubMedCrossRefGoogle Scholar
  7. 7.
    Sluse, F. E., Jarmuszkiewicz, W., Navet, R., Douette, P., Mathy, G., and Sluse-Goffart, C. M. (2006) Biochim. Biophys. Acta, 1757, 480–485.PubMedCrossRefGoogle Scholar
  8. 8.
    Opanasenko, V., Agafonov, A., and Demidova, R. (2002) Photosynth. Res., 72, 243–253.PubMedCrossRefGoogle Scholar
  9. 9.
    Nishimura, M., Ito, T., and Chance, B. (1962) Biochim. Biophys. Acta, 59, 177–182.PubMedCrossRefGoogle Scholar
  10. 10.
    Skulachev, V. P. (1991) FEBS Lett., 294, 158–162.PubMedCrossRefGoogle Scholar
  11. 11.
    Kamp, F., and Hamilton, J. A. (1992) Proc. Natl. Acad. Sci. USA, 89, 11367–11370.PubMedCrossRefGoogle Scholar
  12. 12.
    Kamp, F., and Hamilton, J. A. (1993) Biochemistry, 32, 11074–11085.PubMedCrossRefGoogle Scholar
  13. 13.
    Spetea, C., Hundal, T., Lundin, B., Heddad, M., Adamska, I., and Andersson, B. (2004) Proc. Natl. Acad. Sci. USA, 101, 1409–1414.PubMedCrossRefGoogle Scholar
  14. 14.
    Thuswaldner, S., Lagerstedt, J. O., Rojas-Stutz, M., Bouhidel, K., Der, C., Leborgne-Castel, N., Mishra, A., Marty, F., Schoefs, B., Adamska, I., Persson, B. L., and Spetea, C. (2007) J. Biol. Chem., 282, 8848–8859.PubMedCrossRefGoogle Scholar
  15. 15.
    Pottosin, I. I., and Schonknecht, G. (1996) J. Membr. Biol., 152, 223–233.PubMedCrossRefGoogle Scholar
  16. 16.
    Bulychev, A. A., Antonov, V. F., and Schevchenko, E. V. (1992) Biochim. Biophys. Acta, 1099, 16–24.CrossRefGoogle Scholar
  17. 17.
    Opanasenko, V. K., Red’ko, T. P., Gubanova, O. N., and Yaguzhinsky, L. S. (1992) FEBS Lett., 307, 280–282.PubMedCrossRefGoogle Scholar
  18. 18.
    Garlid, K. D., and Nakashima, R. A. (1983) J. Biol. Chem., 258, 7974–7980.PubMedGoogle Scholar
  19. 19.
    Jaburek, M., Varecha, M., Jezek, P., and Garlid, K. D. (2001) J. Biol. Chem., 276, 31897–31905.PubMedCrossRefGoogle Scholar
  20. 20.
    Ahmed, I., and Krishnamoorthy, G. (1990) Biochim. Biophys. Acta, 1024, 298–306.PubMedCrossRefGoogle Scholar
  21. 21.
    Kolajova, M., Antalik, M., and Sturdik, E. (1993) Gen. Physiol. Biophys., 12, 213–220.PubMedGoogle Scholar
  22. 22.
    Terada, H., Shima, O., Yoshida, K., and Shinohara, Y. (1990) J. Biol. Chem., 265, 7837–7842.PubMedGoogle Scholar
  23. 23.
    Wieckowski, M. R., and Wojtczak, L. (1998) FEBS Lett., 423, 399–342.CrossRefGoogle Scholar
  24. 24.
    Di Paola, V., and Lorusso, M. (2006) Biochim. Biophys. Acta, 1757, 1330–1337.PubMedCrossRefGoogle Scholar
  25. 25.
    Dilley, R. A. (2004) Photosynth. Res., 80, 245–263.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations