Biochemistry (Moscow)

, Volume 74, Issue 6, pp 599–604 | Cite as

Aggregation of frog rhodopsin to oligomers and their dissociation to monomer: Application of BN- and SDS-PAGE

  • S. A. ShukolyukovEmail author
Accelerated Publication


After solubilization of frog rod outer segments (ROS) with mild detergents (digitonin, n-dodecyl-β-D-maltoside, Chaps, Triton X-100) and subsequent one-dimensional blue native polyacrylamide gel electrophoresis (1D BN-PAGE), the position of rhodopsin (Rh) on the gradient gel does not match the monomer with molecular weight of 40 kDa but appears self-associated into aggregate of Rh (RhA) with molecular mass varying in different detergents from 85 to 125 kDa. Short-term treatment (∼2 h) of the excised BN-PAGE strip containing RhA by denaturing detergent mixture (10% SDS + 1 mM dithiothreitol (DTT)) followed by 2D SDS-PAGE revealed dissociation of the RhA into opsin monomer and unidentified proteins. Long-term treatment (∼2 days) of RhA that included extraction, denaturation, concentration, and electrophoresis induced, along with dissociation of RhA into opsin monomer + unidentified proteins, also formation of opsin dimers, trimers, and higher oligomers owing to a secondary aggregation of opsin. Direct solubilization of the ROS by harsh SDS + DTT detergent mixture followed by 1D SDS-PAGE revealed only opsin monomer that upon heating disappeared, trans-forming into higher oligomers owing to secondary aggregation. The data show that degree of Rh oligomerization depends on specific conditions in which it stays. In the native state in the photoreceptor membrane as well as in mild detergents frog Rh exists mainly as dimers or higher oligomers. After solubilization with denaturing detergents, RhA can dissociate into monomers that then spontaneously self-associate into higher oligomers under the influence of various factors (for example, heating).

Key words

frog rhodopsin oligomerization dissociation BN-PAGE SDS-PAGE 



6-aminohexanoic acid


blue-native polyacrylamide gel electrophoresis


Coomassie brilliant blue G-250












G-protein-coupled receptors

1D- and 2D-PAGE

1- and 2-dimension polyacrylamide gel electrophoresis


apparent molecular mass


methylsulfonyl fluoride




rhodopsin aggregate


rod outer segments


Triton X-100


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blasie, J. K., and Worthington, C. R. (1969) J. Mol. Biol., 39, 407–416.PubMedCrossRefGoogle Scholar
  2. 2.
    Chabre, M. (1975) Biochim. Biophys. Acta, 382, 322–335.PubMedCrossRefGoogle Scholar
  3. 3.
    Saibil, H., Chabre, M., and Worcester, D. (1976) Nature, 262, 266–270.PubMedCrossRefGoogle Scholar
  4. 4.
    Roof, D. J., and Heuser, J. E. (1982) J. Cell Biol., 95, 487–500.PubMedCrossRefGoogle Scholar
  5. 5.
    Milligan, G. (2008) British J. Pharmocol., 153,Suppl. 1, 216–229.CrossRefGoogle Scholar
  6. 6.
    Park, P. S., and Palczewski, K. (2005) Proc. Natl. Acad. Sci. USA, 102, 8793–8794.PubMedCrossRefGoogle Scholar
  7. 7.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2003) Nature, 421, 127–128.PubMedCrossRefGoogle Scholar
  8. 8.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2003) FEBS Lett., 564, 281–288.CrossRefGoogle Scholar
  9. 9.
    Liang, Y., Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Palczewski, K., and Engel, A. (2003) J. Biol. Chem., 278, 21655–21662.PubMedCrossRefGoogle Scholar
  10. 10.
    Filipek, S., Krzysko, K. A., Fotiadis, D., Liang, Y., Saperstein, D. A., Engel, A., and Palczewski, K. (2004) Photochem. Photobiol. Sci., 3, 1–12.CrossRefGoogle Scholar
  11. 11.
    Jastrzebska, B., Fotiadis, D., Jang, G.-F., Stenkamp, R. E., Engel, A., and Palczewsk, K. (2006) J. Biol. Chem., 281, 11917–11922.PubMedCrossRefGoogle Scholar
  12. 12.
    Govardovskii, V. I., Korenyak, D. A., Zueva, L. V., and Shukolyukov, S. A. (2008) Abst. “Visionarium VII” at Tvarminne Zoological Station, University of Helsinki, p. 4.Google Scholar
  13. 13.
    Schägger, H., and von Jagow, G. (1991) Analyt. Biochem., 199, 223–231.PubMedCrossRefGoogle Scholar
  14. 14.
    Wittig, I., Braun, H.-P., and Schägger, H. (2006) Nature Protocols, 1, 418–428.PubMedCrossRefGoogle Scholar
  15. 15.
    Eubel, H., Braun, H.-P., and Millar, A. H. (2005) Plant Meth., 1, 1–13.CrossRefGoogle Scholar
  16. 16.
    Krause, F. (2006) Electrophoresis, 27, 2759–2781.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, Z.-J., Xu, X.-P., Fan, K.-Q., Jia, C.-J., and Yang, K.-Q. (2007) J. Biochem. Biophys. Meth., 70, 565–572.PubMedCrossRefGoogle Scholar
  18. 18.
    Molnar, A. M., Alves, A. A., Pereira-da-Silva, L., Macedo, D. V., and Dabbeni-Sala, F. (2004) Brazil. J. Med. Biol. Res., 37, 939–947.Google Scholar
  19. 19.
    Sabar, M., Balk, J., and Leaver, C. J. (2005) Plant J., 44, 893–901.PubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  21. 21.
    Schägger, H. (2006) Nature Protocols, 1, 16–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Lowry, O. H., Rosenbrough, N. I., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–290.PubMedGoogle Scholar
  23. 23.
    Robinson, W. E., Gordon-Walker, A., and Bownds, D. (1972) Nature. New Biol., 235, 112–114.PubMedCrossRefGoogle Scholar
  24. 24.
    Heitzmann, H. (1972) Nature. New Biol., 235, 114.PubMedGoogle Scholar
  25. 25.
    Molday, R. S. (1998) Invest. Ophthalmol. Vis. Sci., 39, 2491–2513.PubMedGoogle Scholar
  26. 26.
    Jastrzebska, B., Maeda, T., Zhu, Li., Fotiadis, D., Filipek, S., Engel, A., Stenkamp, R. E., and Palczewski, K. (2004) J. Biol. Chem., 279, 54663–54675.PubMedCrossRefGoogle Scholar
  27. 27.
    Mansoor, S. E., Palczewski, K., and Farrens, D. L. (2006) Proc. Natl. Acad. Sci. USA, 103, 3060–3065.PubMedCrossRefGoogle Scholar
  28. 28.
    Kota, P., Reeves, P. L., Rajbhandary, U. L., and Khorana, H. G. (2006) Proc. Natl. Acad. Sci. USA, 103, 3054–3059.PubMedCrossRefGoogle Scholar
  29. 29.
    Shukolyukov, S. A. (1972) Biokhimiya, 37, 914–921.Google Scholar
  30. 30.
    Papermaster, D. S., and Dreyer, W. J. (1974) Biochemistry, 13, 2438–2444.PubMedCrossRefGoogle Scholar
  31. 31.
    Fotiadis, D., Jasterzebska, B., Filippsen, A., Muller, D. J., Palczewski, K., and Engel, A. (2006) Curr. Opin. Struct. Biol., 16, 252–259.PubMedCrossRefGoogle Scholar
  32. 32.
    Hanson, S. M., Gurevich, E. V., Vishnivetskiy, S. A., Ahmed, M. R., Song, X., and Gurevich, V. V. (2007) Proc. Natl. Acad. Sci. USA, 104, 3125–3128.PubMedCrossRefGoogle Scholar
  33. 33.
    Nair, K. S., Balasubramanian, N., and Slepak, V. Z. (2002) Curr. Biol., 12, 421–425.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, Q., Zhang, X., Zhang, Li., He, F., Zhang, G., Jamrich, M., and Wensel, T. G. (2008) J. Biol. Chem., 283, 30015–30024.PubMedCrossRefGoogle Scholar
  35. 35.
    Edrington, T. C., 5th, Bennett, M., and Albert, A. D. (2008) Biophys. J., 95, 2859–2866.PubMedCrossRefGoogle Scholar
  36. 36.
    Chabre, M., Deterre, P., and Antonny, B. (2009) Trends Pharmacol. Sci., 5 March 2009 [Epub ahead of print].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Sechenov Institute for Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations