Biochemistry (Moscow)

, Volume 74, Issue 5, pp 578–587 | Cite as

Reversibility of nucleoside diphosphate kinase solubilization from the surface of the outer mitochondrial membrane

  • T. Yu. LipskayaEmail author
  • V. V. Voinova


It was found that in medium with low ionic strength nucleoside diphosphate kinase (NDPK) solubilization from the outer membrane of liver mitochondria could be partially reversed by the addition of 3.3 mM MgCl2. Complete rebinding of the enzyme after the addition of MgCl2 was observed when the mitochondrial washing and storage medium contained leupeptin, an inhibitor of cathepsins. It was demonstrated that leupeptin and another inhibitor of cysteine proteinases, E-64, do not influence the rate of NDPK solubilization as well as its solubilized and membrane-associated activity. We conclude that NDPK becomes sensitive to proteolysis only after its solubilization; proteolysis does not affect the part of the enzyme molecule that is responsible for catalysis. After solubilization of NDPK in the absence of leupeptin, cathepsins damage sites of its binding on the membranes. The rate of the enzyme solubilization is dependent on the pH of the storage medium (pH 6.0–8.0); it decreases with increase in pH. It was shown that in the medium with high ionic strength, MgCl2 does not reverse pH-dependent NDPK solubilization, but solubilization could be reversed by increase in medium pH in the presence of E-64 and BSA. The physiological importance of these results is discussed.

Key words

nucleoside diphosphate kinase mitochondria outer compartment solubilization liver 













nucleoside diphosphate kinase


outer mitochondrial membrane bound NDPK


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehninger, A. (1974) Biochemistry [Russian translation], Mir, Moscow.Google Scholar
  2. 2.
    Besant, P. G., and Attwood, P. V. (2005) Biochim. Biophys. Acta, 1754, 281–290.PubMedGoogle Scholar
  3. 3.
    Yoon, J. H., Singh, P., Lee, D. H., Qiu, J., Cai, S., O’Connor, T. R., Chen, Y., Shen, B., and Pfeifer, G. P. (2005) Biochemistry, 44, 15774–15786.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaetzel, D. M., Zhang, Q., Yang, M., McCorkle, J. R., Ma, D., and Craven, R. J. (2006) J. Bioenerg. Biomembr., 38, 163–167.PubMedCrossRefGoogle Scholar
  5. 5.
    Curtis, C. D., Likhite, V. S., McLeod, I. X., Yates, J. R., and Nardulli, A. M. (2007) Cancer Res., 67, 10600–10607.PubMedCrossRefGoogle Scholar
  6. 6.
    Seong, H. A., Jung, H., and Ha, H. (2007) J. Biol. Chem., 282, 12075–12096.PubMedCrossRefGoogle Scholar
  7. 7.
    Goswami, S. C., Yoon, J. H., Abramczyk, B. M., Pfeifer, G. P., and Postel, E. H. (2006) J. Biol. Chem., 281, 32131–32139.PubMedCrossRefGoogle Scholar
  8. 8.
    Fischbach, M. A., and Settleman, J. (2006) Meth. Enzymol., 407, 33–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou, Q., Yang, X., Zhu, D., Ma, L., Zhu, W., Sun, Z., and Yang, Q. (2007) Biochem. Biophys. Res. Commun., 356, 348–353.PubMedCrossRefGoogle Scholar
  10. 10.
    Cervoni, L., Egistelli, L., Eufemi, M., d’Abusco, A. S., Altieri, F., Lascu, I., Turano, C., and Giartosio, A. (2006) J. Cell Biochem., 98, 421–428.PubMedCrossRefGoogle Scholar
  11. 11.
    Palmieri, D., Horak, C. E., Lee, J. H., Halverson, D. O., and Steeg, P. S. (2006) J. Bioenerg. Biomembr., 38, 151–161.PubMedCrossRefGoogle Scholar
  12. 12.
    Boissan, M., and Lacombe, M. L. (2006) J. Bioenerg. Biomembr., 38, 169–175.PubMedCrossRefGoogle Scholar
  13. 13.
    Kang, Y., Lee, D. C., Han, J., Yoon, S., Won, M., Yeom, J. H., Seong, M. J., Ko, J. J., Lee, K. A., Lee, K., and Bae, J. (2007) Biochem. Biophys. Res. Commun., 359, 76–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Chowdhury, D., Beresford, P. J., Zhu, P., Zhang, D., Sung, J. S., Demple, B., Perrino, F. W., and Lieberman, J. (2006) Mol. Cell., 23, 133–142.PubMedCrossRefGoogle Scholar
  15. 15.
    Giraud, M. F., Georgescauld, F., Lascu, I., and Dautant, A. (2006) J. Bioenerg. Biomembr., 38, 261–264.PubMedCrossRefGoogle Scholar
  16. 16.
    Hammargren, J., Salinas, T., Marechal-Drouard, L., and Knorpp, C. (2007) FEBS Lett., 581, 3507–3511.PubMedCrossRefGoogle Scholar
  17. 17.
    Lacombe, M.-L., Milon, L., Munier, A., Mehus, J. G., and Lambeth, D. O. (2000) J. Bioenerg. Biomembr., 32, 247–258.PubMedCrossRefGoogle Scholar
  18. 18.
    Kowluru, A., Tannous, M., and Chen, H. Q. (2002) Arch. Biochem. Biophys., 398, 160–169.PubMedCrossRefGoogle Scholar
  19. 19.
    Kimura, N., and Shimada, N. (1988) J. Biol. Chem., 263, 4647–4653.PubMedGoogle Scholar
  20. 20.
    Venturelli, D., Ransac, S., Engelhard, A., Perrotti, D., and Calabretta, B. (2000) Exp. Cell Res., 257, 265–271.PubMedCrossRefGoogle Scholar
  21. 21.
    Milon, L., Rousseau-Merck, M.-F., Munier, A., Erent, M., Lascu, I., Capeau, J., and Lacombe, M.-L. (1997) Hum. Genet., 99, 550–557.PubMedCrossRefGoogle Scholar
  22. 22.
    Milon, L., Meyer, P., Chiadmi, M., Munier, A., Johansson, M., Karlsson, A., Lascu, I., Capeau, J., Janin, J., and Lacombe, M.-L. (2000) J. Biol. Chem., 275, 14264–14272.PubMedCrossRefGoogle Scholar
  23. 23.
    Janin, J., Dumas, C., Morera, S., Yingwu, X., Meyer, P., Chiadmi, M., and Cherfils, J. (2000) J. Bioenerg. Biomembr., 32, 215–225.PubMedCrossRefGoogle Scholar
  24. 24.
    Lascu, I., Giartosio, A., Ransac, S., and Erent, M. (2000) J. Bioenerg. Biomembr., 32, 227–236.PubMedCrossRefGoogle Scholar
  25. 25.
    Gilles, A.-M., Presecan, E., Vonica, A., and Lascu, I. (1991) J. Biol. Chem., 266, 8784–8789.PubMedGoogle Scholar
  26. 26.
    Shimada, N., Ishikawa, N., Munakata, Y., Toda, T., Watanabe, K., and Kimura, N. (1993) J. Biol. Chem., 268, 2583–2589.PubMedGoogle Scholar
  27. 27.
    Kimura, N., Shimada, N., Nomura, K., and Watanabe, K. (1990) J. Biol. Chem., 265, 15744–15749.PubMedGoogle Scholar
  28. 28.
    Muchonen, W. W., and Lambeth, D. O. (1995) Comp. Biochem. Physiol., 110B, 211–223.Google Scholar
  29. 29.
    Jacobus, W. E., and Evans, J. J. (1977) J. Biol. Chem., 252, 4232–4241.PubMedGoogle Scholar
  30. 30.
    Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136–1144.CrossRefGoogle Scholar
  31. 31.
    Lipskaya, T. Yu., and Voinova, V. V. (2008) Biochemistry (Moscow), 73, 321–331.Google Scholar
  32. 32.
    Lipskaya, T. Yu., and Voinova, V. V. (2005) Biochemistry (Moscow), 70, 1354–1362.CrossRefGoogle Scholar
  33. 33.
    Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A. (1979) J. Biol. Chem., 254, 6538–6547.PubMedGoogle Scholar
  34. 34.
    Gots, R. E., Gorin, F. A., and Bessman, S. P. (1972) Biochem. Biophys. Res. Commun., 49, 1249–1255.PubMedCrossRefGoogle Scholar
  35. 35.
    Gots, R. E., and Bessman, S. P. (1974) Arch. Biochem. Biophys., 163, 7–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Lipskaya, T. Yu., Geiger, P. J., and Bessman, S. P. (1995) Biochem. Mol. Med., 55, 81–89.PubMedCrossRefGoogle Scholar
  37. 37.
    Wicker, U., Bucheler, K., Gellerich, F. N., Wagner, M., Kapischke, M., and Brdiczka, D. (1993) Biochim. Biophys. Acta, 1142, 228–239.PubMedCrossRefGoogle Scholar
  38. 38.
    Ostlund, A. K., Gohring, U., Krause, J., and Brdiczka, D. (1983) Biochem. Med., 30, 231–245.PubMedCrossRefGoogle Scholar
  39. 39.
    Bessman, S. P., Borrebaek, B., Geiger, P. J., and Ben-Or, S. (1978) in Microenvironments and Metabolic Compartmentation (Srere, P. A., and Estabrook, R. W., eds.) Academic Press, N. Y., pp. 111–128.Google Scholar
  40. 40.
    Viitanen, P. V., Geiger, P. J., Erickson-Viitanen, S., and Bessman, S. P. (1984) J. Biol. Chem., 259, 9679–9686.PubMedGoogle Scholar
  41. 41.
    Brdiczka, D. (1991) Biochim. Biophys. Acta, 1071, 291–312.PubMedGoogle Scholar
  42. 42.
    Adams, V., Griffin, L., Towbin, J., Gelb, B., Worley, K., and McCabe, E. R. (1991) Biochem. Med. Metab. Biol., 45, 271–291.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilson, J. E. (2003) J. Exp. Biol., 206, 2049–2057.PubMedCrossRefGoogle Scholar
  44. 44.
    Laterveer, F. D., Gellerich, F. N., and Nicolay, K. (1995) Eur. J. Biochem., 232, 569–577.PubMedCrossRefGoogle Scholar
  45. 45.
    Weiler, U., Riesinger, I., Knoll, G., and Brdiczka, D. (1985) Biochem. Med., 33, 223–235.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaneko, M., Kurokawa, M., and Ishibashi, S. (1985) Arch. Biochem. Biophys., 237, 135–141.PubMedCrossRefGoogle Scholar
  47. 47.
    Goronovsky, I. T., Nazarenko, Yu. P., and Nekryach, E. F. (1962) Short Reference Book on Chemistry [in Russian], Ukrainian Academy Press, Kiev.Google Scholar
  48. 48.
    Chance, B., and Williams, G. R. (1955) J. Biol. Chem., 217, 383–393.PubMedGoogle Scholar
  49. 49.
    Estabrook, R. W. (1967) Meth. Enzymol., 10, 41–47.CrossRefGoogle Scholar
  50. 50.
    Johnson, D., and Lardy, H. (1967) Meth. Enzymol., 10, 94–96.CrossRefGoogle Scholar
  51. 51.
    Gornall, A. G., Bardawill, C. L., and David, M. M. (1949) J. Biol. Chem., 177, 751–766.PubMedGoogle Scholar
  52. 52.
    Pedersen, P. L. (1973) J. Biol. Chem., 248, 3956–3962.PubMedGoogle Scholar
  53. 53.
    Okazaki, H., Tani, C., Ando, M., Ishii, K., Ishibashi, S., Nishimura, Y., and Kato, K. (1992) J. Biochem., 112, 409–413.PubMedGoogle Scholar
  54. 54.
    Rose, I. A., and Warms, J. V. B. (1967) J. Biol. Chem., 242, 1635–1645.PubMedGoogle Scholar
  55. 55.
    Yokoyama-Sato, K., Akimoto, H., Imai, N., and Ishibashi, S. (1987) Arch. Biochem. Biophys., 257, 56–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Waddell, W. J., and Bates, R. G. (1969) Physiol. Rev., 49, 285–329.PubMedGoogle Scholar
  57. 57.
    DiMarco, J. P., and Hoppel, C. (1975) J. Clin. Invest., 55, 1237–1244.PubMedCrossRefGoogle Scholar
  58. 58.
    Helbling, B., and Renner, E. L. (1998) Eur. J. Clin. Invest., 28, 456–465.PubMedCrossRefGoogle Scholar
  59. 59.
    Gores, G. J., Nieminen, A.-L., Wray, B. E., Herman, B., and Lemasters, J. J. (1989) J. Clin. Invest., 83, 386–396.PubMedCrossRefGoogle Scholar
  60. 60.
    Soric, S., Belanger, M. P., Askin, N., and Wittnich, C. (2007) Transplantation, 84, 763–770.PubMedCrossRefGoogle Scholar
  61. 61.
    Burns, S. P., Cohen, R. D., Iles, R. A., Bailey, R. A., Desai, M., Germain, J. P., and Going, T. C. H. (1999) Biochem. J., 343, 273–280.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou, F. Q. (2005) Am. J. Nephrol., 25, 55–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Vidal, G., Durand, T., Canioni, P., and Gallis, J. L. (1998) Biochim. Biophys. Acta, 1425, 224–234.PubMedGoogle Scholar
  64. 64.
    Monson, J. P., Henderson, R. M., Smith, J. A., Iles, R. A., Faus-Dader, M., Carter, N. D., Heath, R., Metcalfe, H., and Cohen, R. D. (1984) Biosci. Rep., 4, 819–825.PubMedCrossRefGoogle Scholar
  65. 65.
    Durand, T., Gallis, J. L., Masson, S., Cozzone, P. J., and Canioni, P. (1993) Am. J. Physiol., 265, G43–G50.PubMedGoogle Scholar
  66. 66.
    Shapiro, J. I., Whalen, M., and Chan, L. (1990) Magn. Reson. Med., 16, 403–410.PubMedCrossRefGoogle Scholar
  67. 67.
    Alberti, K. G., and Cuthbert, C. (1982) Ciba Found. Symp., 87, 1–19.PubMedGoogle Scholar
  68. 68.
    Shrode, L. D., Tapper, H., and Grinstein, S. (1997) J. Bioenerg. Biomembr., 29, 393–399.PubMedCrossRefGoogle Scholar
  69. 69.
    Milligan, C. L., and Wood, C. M. (1986) J. Exp. Biol., 123, 123–144.PubMedGoogle Scholar
  70. 70.
    Mitchell, P., and Moyle, J. (1969) Eur. J. Biochem., 7, 471–484.PubMedCrossRefGoogle Scholar
  71. 71.
    Junge, W., and McLaughlin, S. (1987) Biochim. Biophys. Acta, 890, 1–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Gutman, M., Nachliel, E., and Gershon, E. (1985) Biochemistry, 24, 2937–2946.PubMedCrossRefGoogle Scholar
  73. 73.
    Engasser, J.-M., and Horvath, C. (1974) Biochim. Biophys. Acta, 358, 178–192.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations