Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 5, pp 569–577 | Cite as

Isolation and properties of fungal β-glucosidases

  • O. G. Korotkova
  • M. V. Semenova
  • V. V. MorozovaEmail author
  • I. N. Zorov
  • L. M. Sokolova
  • T. M. Bubnova
  • O. N. Okunev
  • A. P. Sinitsyn
Article

Abstract

Using chromatography on different matrixes, three β-glucosidases (120, 116, and 70 kDa) were isolated from enzymatic complexes of the mycelial fungi Aspergillus japonicus, Penicillium verruculosum, and Trichoderma reesei, respectively. The enzymes were identified by MALDI-TOF mass-spectrometry. Substrate specificity, kinetic parameters for hydrolysis of specific substrates, ability to catalyze the transglucosidation reaction, dependence of the enzymatic activity on pH and temperature, stability of the enzymes at different temperatures, adsorption ability on insoluble cellulose, and the influence of glucose on catalytic properties of the enzymes were investigated. According to the substrate specificity, the enzymes were shown to belong to two groups: i) β-glucosidase of A. japonicus exhibiting high specific activity to the low molecular weight substrates cellobiose and pNPG (the specific activity towards cellobiose was higher than towards pNPG) and low activity towards polysaccharide substrates (β-glucan from barley and laminarin); ii) β-glucosidases from P. verruculosum and T. reesei exhibiting relatively high activity to polysaccharide substrates and lower activity to low molecular weight substrates (activity to cellobiose was lower than to pNPG).

Key words

β-glucosidase Aspergillus japonicus Penicillium verruculosum Trichoderma reesei saccharification transglucosidation HPLC 

Abbreviations

CBM

cellulose-binding module

CMC

carboxymethylcellulose

MCC

microcrystalline cellulose

PD

polymerization degree

pNPG

p-nitrophenyl-β-D-glucopyranoside

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Umezurike, G. M. (1975) Biochim. Biophys. Acta, 397, 164–178.PubMedGoogle Scholar
  2. 2.
    Rodionova, N. A. (1981) in Cellulases of Microorganisms (Kretovich, V. L., ed.) [in Russian], Nauka, Moscow, pp. 4–40.Google Scholar
  3. 3.
    Khorlin, A. Ya. (1974) in Structure and Functions of Enzyme Active Sites [in Russian], Nauka, Moscow, pp. 39–69.Google Scholar
  4. 4.
    Klesov, A. A., Rabinovich, M. L., Churilova, I. V., Sinitsyn, A. P., Grigorash, S. Yu., Tikhonova, T. V., and Malinovskaya, L. M. (1980) Bioorg. Khim., 6, 1377–1395.Google Scholar
  5. 5.
    Aerts, G. M., van Opstal, O., and de Bruyne, K. (1982) Carbohydr. Res., 100, 221–233.CrossRefGoogle Scholar
  6. 6.
    Biasaria, V. S., and Mishra, S. (1989) CRC Crit. Rev. Biotechnol., 5, 61–103.CrossRefGoogle Scholar
  7. 7.
    Tomme, P., Warren, R. A. J., and Gilkes, N. R. (1995) Adv. Microbiol. Physiol., 37, 1–81.CrossRefGoogle Scholar
  8. 8.
    Kastel’yanos, O., Sinitsyn, A. P., and Vlasenko, E. Yu. (1994) Prikl. Biokhim. Mikrobiol., 30, 799–811.Google Scholar
  9. 9.
    Klesov, A. A., Rabinovich, M. L., Sinitsyn, A. P., Churilova, I. V., and Grigorash, S. Yu. (1980) Bioorg. Khim., 6, 1225–1241.Google Scholar
  10. 10.
    Skomarovskii, A. A., Markov, A. V., Gusakov, A. V., Kondrat’eva, E. G., Okunev, O. N., Bekkarevich, A. O., Matys, V. Yu., and Sinitsyn, A. P. (2006) Prikl. Biokhim. Mikrobiol., 42, 674–680.PubMedGoogle Scholar
  11. 11.
    Dawson, R., Elliott, D., Elliott, W., and Jones, K. (1991) Data for Biochemical Research [Russian translation], Mir, Moscow.Google Scholar
  12. 12.
    James, P. (ed.) (2001) Proteome Research: Mass Spectrometry, Springer-Verlag, Berlin.Google Scholar
  13. 13.
    Smith, B. E. (1997) Protein Sequencing Protocols, Human Press, Totowa, 375 p.Google Scholar
  14. 14.
    Yates, J. (1998) J. Mass Spectrom., 33, 1–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) Nucleic Acids Res., 31, 3381–3385.PubMedCrossRefGoogle Scholar
  16. 16.
    Nelson, N. (1944) J. Biol. Chem., 153, 375–379.Google Scholar
  17. 17.
    Somogyi, M. (1952) J. Biol. Chem., 195, 19–23.Google Scholar
  18. 18.
    Zorov, I. N., Dubasova, M. Yu., Sinitsyn, A. P., Gusakov, A. V., Mitchenko, A. A., Baraznenok, V. A., Gutyerres, B., and Popova, N. N. (1997) Biochemistry (Moscow), 62, 704–709.Google Scholar
  19. 19.
    Sinitsyn, A. P., Gusakov, A. V., and Chernoglazov, V. M. (1995) Bioconversion of Lignocellulose Materials [in Russian], MGU Publishers, Moscow.Google Scholar
  20. 20.
    Berezin, I. V., Rabinovich, M. L., and Sinitsyn, A. P. (1977) Biokhimiya, 42, 1631–1636.Google Scholar
  21. 21.
    Fersht, A. (1980) Enzyme Structure and Mechanism [Russian translation], Mir, Moscow.Google Scholar
  22. 22.
    Xie, Y., Gao, Y., and Chen, Z. (2004) Appl. Biochem. Biotechnol., 119, 229–240.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, H., Hayn, M., and Esterbauer, H. (1992) Biochim. Biophys. Acta, 22, 54–60.Google Scholar
  24. 24.
    Kimura, I., Yoshioka, N., and Tajima, S. (1999) J. Biosci. Bioeng., 87, 538–541.PubMedCrossRefGoogle Scholar
  25. 25.
    Yan, T. R., Lin, Y. H., and Lin, C. L. (1998) J. Agric. Food Chem., 46, 431–437.PubMedCrossRefGoogle Scholar
  26. 26.
    Linder, M., and Teeri, T. T. (1997) J. Biotechnol., 57, 12–28.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. G. Korotkova
    • 1
  • M. V. Semenova
    • 2
  • V. V. Morozova
    • 2
    Email author
  • I. N. Zorov
    • 1
    • 2
  • L. M. Sokolova
    • 3
  • T. M. Bubnova
    • 3
  • O. N. Okunev
    • 3
  • A. P. Sinitsyn
    • 1
    • 2
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Chemical FacultyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations