Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 5, pp 562–568 | Cite as

Glycogen phosphorylase b and phosphorylase kinase binding to glycogen under molecular crowding conditions. Inhibitory effect of FAD

  • N. A. ChebotarevaEmail author
  • A. V. Meremyanin
  • V. F. Makeeva
  • T. B. Eronina
  • B. I. Kurganov
Article

Abstract

Dynamic light scattering was used to study the interaction of phosphorylase kinase (PhK) and glycogen phos-phorylase b (Phb) from rabbit skeletal muscle with glycogen under molecular crowding conditions arising from the presence of 1 M trimethylamine N-oxide and at physiological ionic strength. The mean value of hydrodynamic radius of the initial glycogen particles was 52 nm. Crowding stimulated Phb and PhK combined binding on glycogen particles. Two-stage character of PhK binding to glycogen particles containing adsorbed Phb was found in the presence of the crowding agent. At the initial stage, limited size particles with hydrodynamic radius of ∼220 nm are formed, whereas the second stage is accompanied by linear growth of hydrodynamic radius. Flavin adenine dinucleotide (FAD) selectively inhibited PhK binding at the second stage. The data indicate that in the first stage Phb is involved in PhK binding by glycogen particles containing adsorbed Phb, whereas PhK binding in the second stage does not involve Phb.

Key words

phosphorylase kinase glycogen phosphorylase b crowding trimethylamine N-oxide glycogen FAD dynamic light scattering 

Abbreviations

FAD

flavin adenine dinucleotide

Phb

glycogen phosphorylase b

PhK

phosphorylase kinase

TMAO

trimethylamine N-oxide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellis, R. J., and Minton, A. P. (2003) Nature, 425, 27–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Zimmerman, S. B., and Minton, A. P. (1993) Annu. Rev. Biophys. Biomol. Struct., 22, 27–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Minton, A. P. (2001) J. Biol. Chem., 276, 10577–10580.PubMedCrossRefGoogle Scholar
  4. 4.
    Ellis, R. J. (2001) Trends Biochem. Sci., 26, 597–604.PubMedCrossRefGoogle Scholar
  5. 5.
    Chebotareva, N. A., Kurganov, B. I., and Livanova, N. B. (2004) Biochemistry (Moscow), 69, 1239–1251.CrossRefGoogle Scholar
  6. 6.
    Hall, D., and Minton, A. P. (2003) Biochim. Biophys. Acta, 1649, 127–139.PubMedGoogle Scholar
  7. 7.
    Chebotareva, N. A. (2007) Biochemistry (Moscow), 72, No. 13, 1478–1490.CrossRefGoogle Scholar
  8. 8.
    Al-Habori, M. (2001) Int. J. Biochem. Cell Biol., 33, 844–864.PubMedCrossRefGoogle Scholar
  9. 9.
    Barford, D., and Johnson, L. N. (1989) Nature, 340, 606–616.CrossRefGoogle Scholar
  10. 10.
    Krebs, E. G., Graves, D. J., and Fisher, E. H. (1959) J. Biol. Chem., 23, 2867–2873.Google Scholar
  11. 11.
    Brusharia, R. J., and Walsh, D. A. (1999) Frontiers Biosci., 4, 618–641.CrossRefGoogle Scholar
  12. 12.
    Livanova, N. B. (1993) Biochemistry (Moscow), 58, 1234–1239.Google Scholar
  13. 13.
    Cohen, P. (1973) Eur. J. Biochem., 34, 1–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Nadeaw, O. W., Traxler, K. W., Fee, L. R., Baldwin, B. A., and Carlson, G. M. (1999) Biochemistry, 38, 2551–2559.CrossRefGoogle Scholar
  15. 15.
    Wilkinson, D. A., Fitzgerald, T. J., Marion, T. N., and Carlson, G. M. (1999) J. Protein Chem., 18, 157–164.PubMedCrossRefGoogle Scholar
  16. 16.
    Priddy, T. S., Middaugh, C. R., and Carlson, G. M. (2007) Protein Sci., 16, 517–527.PubMedCrossRefGoogle Scholar
  17. 17.
    Nadeaw, O. W., Carlson, G. M., and Gogol, E. P. (2002) Structure, 10, 23–32.CrossRefGoogle Scholar
  18. 18.
    Priddy, T. S., Price, E. S., Johnson, C. K., and Carlson, G. M. (2007) Protein Sci., 16, 1017–1023.PubMedCrossRefGoogle Scholar
  19. 19.
    Chebotareva, N. A., Meremyanin, A. V., Makeeva, V. F., and Kurganov, B. I. (2006) Progr. Colloid Polym. Sci., 131, 83–92.CrossRefGoogle Scholar
  20. 20.
    Chebotareva, N. A. (2006) Interaction of Glycogenolysis Enzymes in Conditions of Molecular Crowding: Doctoral dissertation [in Russian], Bach Institute of Biochemistry, RAN, Moscow.Google Scholar
  21. 21.
    Chebotareva, N. A., Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Livanova, N. B., and Harding, S. E. (2002) Progr. Colloid Polym. Sci., 119, 70–76.CrossRefGoogle Scholar
  22. 22.
    Meremyanin, A. V., Chebotareva, N. A., Makeeva, V. F., and Kurganov, B. I. (2007) Dokl. Biochem. Biophys., 415, 183–185.CrossRefGoogle Scholar
  23. 23.
    Chebotareva, N. A., Harding, S. E., and Winzor, D. J. (2001) Eur. J. Biochem., 268, 506–513.PubMedCrossRefGoogle Scholar
  24. 24.
    Chebotareva, N. A., Kurganov, B. I., Harding, S. E., and Winzor, D. J. (2005) Biophys. Chem., 113, 61–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Eronina, T. B., Chebotareva, N. A., and Kurganov, B. I. (2005) Biochemistry (Moscow), 70, 1237–1244.CrossRefGoogle Scholar
  26. 26.
    Chebotareva, N. A., Meremyanin, A. V., Makeeva, V. F., Livanova, N. B., and Kurganov, B. I. (2008) Biophys. Chem., 133, 45–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Makeeva, V. F., Chebotareva, N. A., Andreeva, I. E., Livanova, N. B., and Kurganov, B. I. (2006) Biochemistry (Moscow), 71, 652–657.CrossRefGoogle Scholar
  28. 28.
    Polishchuk, S. V., Brandt, N. R., Meyer, H. E., Varsanyi, M., and Heilmeyer, L. M., Jr. (1995) FEBS Lett., 362, 271–275.PubMedCrossRefGoogle Scholar
  29. 29.
    Meyer, H. E., Heilmeyer, L. M. G., Jr., and Haschke, R. H. (1970) J. Biol. Chem., 245, 6642–6648.PubMedGoogle Scholar
  30. 30.
    Chebotareva, N. A., Andreeva, I. E., Makeeva, V. F., Livanova, N. B., and Kurganov, B. I. (2004) J. Mol. Recognit., 17, 426–432.PubMedCrossRefGoogle Scholar
  31. 31.
    Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Chebotareva, N. A., and Livanova, N. B. (1999) Biochemistry (Moscow), 64, 159–168.Google Scholar
  32. 32.
    Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Chebotareva, N. A., and Livanova, N. B. (1999) FEBS Lett., 445, 173–176.PubMedCrossRefGoogle Scholar
  33. 33.
    Durchschlag, H. (1986) in Thermodynamic Data for Biochemistry and Biotechnology (Hinz, H.-J., ed.) Springer-Verlag, Berlin, pp. 45–182.Google Scholar
  34. 34.
    Morozov, V. E., Eronina, T. B., Andreeva, I. E., Silonova, G. V., Solov’eva, N. V., Shchors, E. I., Livanova, N. B., and Poglazov, B. F. (1989) Biokhimiya, 54, 448–455.Google Scholar
  35. 35.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  36. 36.
    Fischer, E. H., and Krebs, E. G. (1962) Meth. Enzymol., 5, 369–373.CrossRefGoogle Scholar
  37. 37.
    Kastenschmidt, L. L., Kastenschmidt, J., and Helmreich, E. (1968) Biochemistry, 7, 3590–3608.PubMedCrossRefGoogle Scholar
  38. 38.
    Meremyanin, A. V., Eronina, T. B., Chebotareva, N. A., Kleimenov, S. Yu., Yudin, I. K., Muranov, K. O., Ostrovsky, M. A., and Kurganov, B. I. (2007) Biochemistry (Moscow), 72, 518–528.CrossRefGoogle Scholar
  39. 39.
    Klinov, S. V., Davidov, D. R., Lissovskaya, N. P., Tarasov, O. S., and Kurganov, B. I. (1980) Mol. Biol. (Moscow), 14, 348–356.Google Scholar
  40. 40.
    Klinov, S. V., Chebotareva, N. A., Lissovskaya, N. P., Davidov, D. R., and Kurganov, B. I. (1982) Biochim. Biophys. Acta, 709, 91–98.PubMedGoogle Scholar
  41. 41.
    Chebotareva, N. A., Lissovskaya, N. P., and Kurganov, B. I. (1979) Mol. Biol. (Moscow), 13, 228–236.Google Scholar
  42. 42.
    Chebotareva, N. A., Sugrobova, N. P., Bulanova, L. N., Poznanskaya, A. A., Kurganov, B. I., and Gunar, V. I. (1995) Biochemistry (Moscow), 60, 1551–1558.Google Scholar
  43. 43.
    Golub, N., Meremyanin, A., Markossian, K., Eronina, T., Chebotareva, N., Asryants, R., Muronets, V., and Kurganov, B. (2007) FEBS Lett., 581, 4223–4227.PubMedCrossRefGoogle Scholar
  44. 44.
    Kurganov, B. I., Klinov, S. V., and Chebotareva, N. A. (1994) Uspekhi Biol. Khim., 34, 83–110.Google Scholar
  45. 45.
    Chebotareva, N. A., Klinov, S. V., and Kurganov, B. I. (2001) Biotechnol. Genet. Eng. Rev., 18, 265–297.PubMedGoogle Scholar
  46. 46.
    Chebotareva, N. A., Kurganov, B. I., Pekel, N. D., and Beresovskii, V. M. (1986) Biochem. Int., 13, 189–197.PubMedGoogle Scholar
  47. 47.
    Chebotareva, N. A., Kurganov, B. I., Lubarev, A. E., Davydov, D. R., and Pekel, N. D. (1991) Biochimie, 73, 1339–1343.PubMedCrossRefGoogle Scholar
  48. 48.
    Kurganov, B. I., Schors, E. I., Livanova, N. B., Chebotareva, N. A., Eronina, T. B., Andreeva, I. E., Makeeva, V. P., and Pekel, N. D. (1993) Biochimie, 75, 481–485.PubMedCrossRefGoogle Scholar
  49. 49.
    Livanova, N. B., Chebotareva, N. A., Eronina, T. B., and Kurganov, B. I. (2002) Biochemistry (Moscow), 67, 1089–1098.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. A. Chebotareva
    • 1
    Email author
  • A. V. Meremyanin
    • 1
  • V. F. Makeeva
    • 1
  • T. B. Eronina
    • 1
  • B. I. Kurganov
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations