Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 5, pp 557–561 | Cite as

DNA ligases from thermophilic bacteria enhance PCR amplification of long DNA sequences

  • K. B. IgnatovEmail author
  • V. M. Kramarov
Article

Abstract

Bacterial NAD-dependent Taq and Tth DNA ligases are capable of significantly increasing the yield of long PCR products when the amplification is carried out using bacterial family A DNA polymerases, e.g. Taq or Tth DNA polymerases, or with enzymatic blends containing these polymerases. We also show that Taq and Tth DNA ligases improve the results of PCR in the absence of NAD and therefore in the absence of DNA ligase activity. These observations suggest that bacterial DNA ligases can interact with these DNA polymerases, presumably as accessory proteins, thereby enhancing the efficiency of DNA polymerization.

Key words

long PCR Taq DNA polymerase Taq DNA ligase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes, W. M. (1994) Proc. Natl. Acad. Sci. USA, 91, 2216–2220.PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994) Proc. Natl. Acad. Sci. USA, 91, 5695–5699.PubMedCrossRefGoogle Scholar
  3. 3.
    Barnes, W. M. (1992) Gene, 112, 29–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Fromenty, B., Demeilliers, C., Mansouri, A., and Pessayre, D. (2000) Nucleic Acids Res., 28, e50.PubMedCrossRefGoogle Scholar
  5. 5.
    Hogrefe, H. H., Hansen, C. J., Scott, B. R., and Nielson, K. B. (2002) Proc. Natl. Acad. Sci. USA, 99, 596–601.PubMedCrossRefGoogle Scholar
  6. 6.
    Fogg, M. J., Pearl, L. H., and Connolly, B. A. (2002) Nature Struct. Biol., 9, 922–927.PubMedCrossRefGoogle Scholar
  7. 7.
    Motz, M., Kober, I., Girardot, C., Loeser, E., Bauer, U., Albers, M., Moeckel, G., Minch, E., Voss, H., Kilger, C., and Koegl, M. (2002) J. Biol. Chem., 277, 16179–16188.PubMedCrossRefGoogle Scholar
  8. 8.
    Prelich, G., and Sillman, B. (1988) Cell, 53, 117–126.PubMedCrossRefGoogle Scholar
  9. 9.
    Cann, I. K. O., Ishino, S., Hayashi, I., Komori, K., Toh, H., Morikawa, K., and Ishino, Y. (1999) J. Bacteriol., 181, 6591–6599.PubMedGoogle Scholar
  10. 10.
    Bullard, J. M., Williams, J. C., Acker, W. K., Jacobi, C., Janjc, N., and McHenry, C. S. (2002) J. Biol. Chem., 277, 13401–13408.PubMedCrossRefGoogle Scholar
  11. 11.
    Modrich, P., and Richardson, C. C. (1975) J. Biol. Chem., 250, 5508–5514.PubMedGoogle Scholar
  12. 12.
    Takahashi, M., Yamaguchi, E., and Uchida, T. (1984) J. Biol. Chem., 259, 10041–10047.PubMedGoogle Scholar
  13. 13.
    Barany, F., and Gelfand, D. H. (1991) Gene, 109, 1–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Kornberg, A., and Baker, T. A. (1992) DNA Replication, 2nd Edn., W. H. Freeman and Company, New York.Google Scholar
  15. 15.
    Lauer, G., Rudd, E. A., McKay, D. L., Ally, A., Ally, D., and Backman, K. C. (1991) J. Bacteriol., 173, 5047–5053.PubMedGoogle Scholar
  16. 16.
    Billen, D., and Hellermann, G. R. (1976) J. Bacteriol., 126, 785–793.PubMedGoogle Scholar
  17. 17.
    Sakakibara, Y. (1978) J. Mol. Biol., 124, 373–389.PubMedCrossRefGoogle Scholar
  18. 18.
    Kornberg, A. (1974) DNA Synthesis, W. H. Freeman and Company, San Francisco.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations