Biochemistry (Moscow)

, Volume 74, Issue 5, pp 533–542 | Cite as

Polysaccharides of basidiomycetes. Alkali-soluble polysaccharides from the mycelium of white rot fungus Ganoderma lucidum (Curt.: Fr.) P. Karst

  • M. S. Evsenko
  • A. S. Shashkov
  • A. V. Avtonomova
  • L. M. Krasnopolskaya
  • A. I. UsovEmail author


Two polysaccharides were isolated from submergedly cultured mycelium of the basidiomycete Ganoderma lucidum by extraction with alkali followed by fractionation with Fehling reagent. The polysaccharides were shown to be a linear (1→3)-α-D-glucan and a highly branched xylomannan containing a backbone built up of (1→3)-linked α-D-mannopyranose residues, the majority of which are substituted at O-4 by single β-D-xylopyranose residues or by disaccharide fragments β-D-Manp-(1→3)-β-D-Xylp-(1→. Polysaccharide structures were elucidated by NMR spectroscopy in combination with methylation analysis and periodate oxidation. An interesting feature of the xylomannan is the simultaneous presence of α-D-mannopyranose and β-D-mannopyranose residues, the first forming the backbone, and the second being the non-reducing terminal units of disaccharide side chains.

Key words

Basidiomycetes white rot fungi Ganoderma lucidum polysaccharides (1→3)-α-D-glucan branched xylomannan NMR spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wasser, S. P. (2002) Appl. Microbiol. Biotechnol., 60, 258–274.PubMedCrossRefGoogle Scholar
  2. 2.
    Borchers, A. T., Keen, C. L., and Gershwin, M. E. (2004) Exp. Biol. Med. (Maywood), 229, 393–406.Google Scholar
  3. 3.
    Zhang, M., Cui, S. W., Cheung, P. C. K., and Wang, Q. (2007) Trends Food Sci. Technol., 18, 4–19.CrossRefGoogle Scholar
  4. 4.
    Stone, B. A., and Clarke, A. E. (1992) Chemistry and Biology of (1→3)-β-Glucans, LaTrobe University Press, La Trobe University, Victoria, Australia.Google Scholar
  5. 5.
    Zekovic, D. B., Kwiatkowski, S., Vrvic, M. M., Jakovljevic, D., and Moran, C. A. (2005) Crit. Rev. Biotechnol., 25, 205–230.PubMedCrossRefGoogle Scholar
  6. 6.
    Lull, C., Wichers, H. J., and Savelkoul, H. E. J. (2005) Mediators Inflammation, 2, 63–80.CrossRefGoogle Scholar
  7. 7.
    Descroix, K., Ferrieres, V., Jamois, F., Yvin, J. C., and Plusquellec, D. (2006) Mini Rev. Med. Chem., 6, 1341–1349.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin, Z., and Zhang, H. (2004) Acta Pharmacol. Sin., 25, 1387–1395.PubMedGoogle Scholar
  9. 9.
    Huie, C. W., and Di, X. (2004) J. Chromatogr. B, 812, 241–257.Google Scholar
  10. 10.
    Paterson, R. R. M. (2006) Phytochemistry, 67, 1985–2001.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen, J., Zhou, J., Zhang, L., Nakamura, Y., and Norisuye, T. (1998) Polymer J., 10, 838–843.CrossRefGoogle Scholar
  12. 12.
    Bao, X., Duan, J., Fang, X., and Fang, J. (2001) Carbohydr. Res., 336, 127–140.PubMedCrossRefGoogle Scholar
  13. 13.
    Bao, X., Liu, C., Fang, J., and Li, X. (2001) Carbohydr. Res., 332, 67–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Bao, X.-F., Wang, X.-S., Dong, Q., Fang, J.-N., and Li, X.-Y. (2002) Phytochemistry, 59, 175–181.PubMedCrossRefGoogle Scholar
  15. 15.
    Bao, X.-F., Zhen, Y., Ruan, L., and Fang, J.-N. (2002) Chem. Pharm. Bull., 50, 623–629.PubMedCrossRefGoogle Scholar
  16. 16.
    Miyazaki, T., and Nishijima, M. (1981) Chem. Pharm. Bull., 29, 3611–3616.PubMedGoogle Scholar
  17. 17.
    Saito, K., Nishijima, M., and Miyazaki, T. (1989) Chem. Pharm. Bull., 37, 3134–3136.Google Scholar
  18. 18.
    Miyazaki, T., and Nishijima, M. (1982) Carbohydr. Res., 109, 290–294.CrossRefGoogle Scholar
  19. 19.
    Li, Y.-Q., Fang, L., and Zhang, K.-C. (2007) Carbohydr. Polym., 68, 323–328.CrossRefGoogle Scholar
  20. 20.
    Wang, Y.-Y., Khoo, K.-H., Chen, S.-T., Lin, C.-C., Wong, C.-H., and Lin, C.-H. (2002) Bioorg. Med. Chem., 10, 1057–1062.PubMedCrossRefGoogle Scholar
  21. 21.
    Ye, L. B., Zhang, J. S., Ye, X. J., Tang, Q. J., Liu, Y. F., Gong, C. Y., Du, X. J., and Pan, Y. J. (2008) Carbohydr. Res., 343, 746–752.PubMedCrossRefGoogle Scholar
  22. 22.
    Szedlay, G. (2002) Acta Microbiol. Immunol. Hung., 49, 235–243.PubMedCrossRefGoogle Scholar
  23. 23.
    Avtonomova, A. V., Krasnopol’skaya, L. M., and Maksimov, V. N. (2006) Mikrobiologiya, 75, 186–192.Google Scholar
  24. 24.
    Krasnopol’skaya, L. M., Belitsky, I. V., Avtonomova, A. V., Soboleva, N. U., Usov, A. I., Isakova, E. B., Libenzon, A. V., and Bukhman, V. M. (2005) Uspekhi Med. Mikol., 5, 192–195.Google Scholar
  25. 25.
    Bjorndal, H., Hellerqvist, C. G., Lindberg, B., and Svensson, S. (1970) Angew. Chem. Int. Ed. Engl., 9, 610–619.CrossRefGoogle Scholar
  26. 26.
    Sloneker, J. (1975) Methods of Carbohydrate Research (Chorlin, A. Y., ed.) [Russian translation], Mir, Moscow, pp. 22–25.Google Scholar
  27. 27.
    Cases, M. R., Cerezo, A. S., and Stortz, C. A. (1995) Carbohydr. Res., 269, 333–341.CrossRefGoogle Scholar
  28. 28.
    Bilan, M. I., Grachev, A. A., Ustuzhanina, N. E., Shashkov, A. S., Nifantiev, N. E., and Usov, A. I. (2002) Carbohydr. Res., 337, 719–730.PubMedCrossRefGoogle Scholar
  29. 29.
    Mizuno, T. (1999) Int. J. Med. Mushrooms, 1, 9–29.Google Scholar
  30. 30.
    Whyte, J. N. C., and Southcott, B. A. (1970) Phytochemistry, 9, 1159–1161.CrossRefGoogle Scholar
  31. 31.
    Jones, J. K. N., and Studley, R. J. (1967) Methods of Carbohydrate Chemistry (Kochetkov, N. K., ed.) [Russian translation], Mir, Moscow, pp. 286–288.Google Scholar
  32. 32.
    Usov, A. I., Blanko, F. F., Ivanova, V. S., Bedrina, E. N., Firsova, C. A., Sedakova, L. A., and Funtikova, N. S. (1991) Bioorg. Khim., 17, 121–125.PubMedGoogle Scholar
  33. 33.
    Goldstein, I. J., Hay, G. V., Lewis, B. A., and Smith, F. (1967) Methods of Carbohydrate Chemistry (Kochetkov, N. K., ed.) [Russian translation], Mir, Moscow, pp. 471–478.Google Scholar
  34. 34.
    Lipkind, G. M., Shashkov, A. S., Knirel, Y. A., Vinogradov, E. V., and Kochetkov, N. K. (1988) Carbohydr. Res., 175, 59–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Gorin, P. A. G., and Barreto-Bergter, E. (1983) The Polysaccharides (Aspinall, G. O., ed.) Vol. 2, Academic Press, N. Y., pp. 365–409.Google Scholar
  36. 36.
    Kiho, T., Yoshida, I., Nagai, K., Ukai, S., and Hara, C. (1989) Carbohydr. Res., 189, 273–279.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang, L., Zhang, M., Zhou, Q., Chen, J., and Zeng, F. (2000) Biosci. Biotechnol. Biochem., 64, 2172–2178.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang, Q., Zhang, L., Cheung, P. C. K., and Tan, X. (2006) Carbohydr. Polym., 64, 337–344.CrossRefGoogle Scholar
  39. 39.
    Angyal, S. J., Bender, V. J., and Ralph, B. J. (1974) Biochim. Biophys. Acta, 362, 175–187.PubMedGoogle Scholar
  40. 40.
    Bouveng, H. O., Fraser, R. N., and Lindberg, B. (1967) Carbohydr. Res., 4, 20–31.CrossRefGoogle Scholar
  41. 41.
    Smiderle, F. R., Carbonero, E. R., Mellinger, C. G., Sassaki, G. L., Gorin, P. A. J., and Iacomini, M. (2006) Phytochemistry, 67, 2189–2196.PubMedCrossRefGoogle Scholar
  42. 42.
    Vinogradov, E., Petersen, B. O., Duus, J. O., and Wasser, S. (2004) Carbohydr. Res., 339, 1483–1489.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. S. Evsenko
    • 1
    • 2
  • A. S. Shashkov
    • 1
  • A. V. Avtonomova
    • 2
  • L. M. Krasnopolskaya
    • 2
  • A. I. Usov
    • 1
    Email author
  1. 1.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Gause Institute of New AntibioticsRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations