Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 5, pp 528–532 | Cite as

Physicochemical and kinetic characteristics of isoforms of isocitrate lyase from corn

  • A. T. Eprintsev
  • E. V. Maslova
  • D. N. Fedorin
  • V. N. PopovEmail author
Article

Abstract

Three electrophoretically homogeneous isocitrate lyase (ICL) isoforms were obtained by 4-step purification from corn scutellum (ICL1 and ICL2) and green leaves (ICL). Their physicochemical, kinetic, and regulatory properties were analyzed. The molecular masses of ICL1, ICL2, and ICL isoforms determined by gel filtration are 164, 207, and 208 kDa, respectively. The proteins have homotetrameric quaternary structure with subunit molecular masses of 43, 48, and 47 kDa for ICL1, ICL2, and ICL, respectively. We found some differences in pH optimum, K m, and regulation by divalent metal cations between ICL1 and ICL2 and significant similarity of ICL2 and ICL. Based on these data, we suggest the participation of these isoforms in metabolic regulation of the glyoxylate cycle, organic acid metabolism during photorespiration in leaves and acidosis in corn seeds.

Key words

isocitrate lyase isoforms electrophoresis quaternary structure subunits glyoxylate cycle gluconeogenesis 

Abbreviations

DTT

dithiothreitol

GC

glyoxylate cycle

ICL

isocitrate lyase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eprintsev, A. T., Popov, V. N., and Shevchenko, M. Yu. (2007) Glyoxylate Cycle. Universal Mechanism of Adaptation? [in Russian], Akademkniga, Moscow.Google Scholar
  2. 2.
    Beevers, H. (1979) Plant Physiol., 30, 159–193.CrossRefGoogle Scholar
  3. 3.
    De Bellis, L., and Nishimura, M. (1991) Plant Cell Physiol., 32, 555–561.Google Scholar
  4. 4.
    Lu, Y., Wu, Y. R., and Han, B. (2005) Biochim. Biophys. Acta, 37, 406–414.Google Scholar
  5. 5.
    Bytof, G., Knopp, S. E., Kramer, D., Breitenstein, B., Bergervoet, J. H., Groot, S. P., and Selmar, D. (2007) Ann. Bot. (Lond.), 100, 61–66.CrossRefGoogle Scholar
  6. 6.
    Pistelli, L., Nieri, B., Smith, S. M., Alpi, A., and de Bellis, L. (1996) Plant Sci., 119, 23–29.CrossRefGoogle Scholar
  7. 7.
    Chen, Z. H., Walker, R. P., Acheson, R. M., Tecsi, L. I., Wingler, A., Lea, P. J., and Leegood, R. C. (2000) Plant Cell Physiol., 41, 960–967.PubMedCrossRefGoogle Scholar
  8. 8.
    Lu, Z., Feng, X., Song, L., Han, Y., Kim, A., Herzberg, O., Woodson, W. R., Martin, B. M., Mariano, P. S., and Dunaway-Mariano, D. (2005) Biochemistry, 44, 16365–16376.PubMedCrossRefGoogle Scholar
  9. 9.
    Godavari, H. R. (1973) Plant Physiol., 51, 863–867.PubMedCrossRefGoogle Scholar
  10. 10.
    Igamberdiyev, A. U. (1990) Microbodies in Plant Metabolism [in Russian], Voronezh State University, Voronezh.Google Scholar
  11. 11.
    Zemlyanukhin, A. A., Igamberdiyev, A. U., and Presnyakova, E. N. (1986) Biokhimiya, 51, 442–448.Google Scholar
  12. 12.
    Kornberg, H. L., and Krebs, H. A. (1957) Nature, 179, 988–991.PubMedCrossRefGoogle Scholar
  13. 13.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  14. 14.
    Determan, G. (1970) Gel Chromatography [Russian translation], Mir, Moscow.Google Scholar
  15. 15.
    Davis, B. J. (1994) Ann. N. Y. Acad. Sci., 121, 404–427.CrossRefGoogle Scholar
  16. 16.
    Reeves, H. C., and Volk, M. J. (1972) Anal. Biochem., 48, 437–441.PubMedCrossRefGoogle Scholar
  17. 17.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  18. 18.
    Lakin, G. F. (1980) Biometry [in Russian], Vysshaya Shkola, Moscow.Google Scholar
  19. 19.
    Ruchti, M., and Widmer, F. (1986) J. Exp. Bot., 37, 1685–1690.CrossRefGoogle Scholar
  20. 20.
    Pinzauti, G., Giachetti, E., and Vanni, P. (1983) Arch. Biochem. Biophys., 225, 137–142.PubMedCrossRefGoogle Scholar
  21. 21.
    Kleczkowski, L. A., Randall, D. D., and Blevins, D. G. (1986) Biochemistry, 239, 653–659.Google Scholar
  22. 22.
    Pinzauti, G., Giachetti, E., Camici, G., Manao, G., Cappugi, G., and Vanni, P. (1986) Arch. Biochem. Biophys., 244, 85–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Ranaldi, F., Vanni, P., and Giachetti, E. (2000) Plant Physiol., 124, 1131–1138.PubMedCrossRefGoogle Scholar
  24. 24.
    Shchiparev, S. M., Chuprova, G. V., and Polevoy, V. V. (1976) Vestn. LGU, Biologiya, 21, 314–319.Google Scholar
  25. 25.
    Hunt, L., and Fletcher, J. (1977) Plant Sci. Lett., 10, 243.CrossRefGoogle Scholar
  26. 26.
    Millerd, A., Morton, R. K., and Wells, J. R. (1962) Nature, 196, 955.CrossRefGoogle Scholar
  27. 27.
    Zelitch, I. (1988) Plant Physiol., 86, 463–468.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. T. Eprintsev
    • 1
  • E. V. Maslova
    • 1
  • D. N. Fedorin
    • 1
  • V. N. Popov
    • 1
    Email author
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations