Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 5, pp 518–527 | Cite as

Conformational stability of cytochrome b 5, enhanced green fluorescent protein, and their fusion protein Hmwb5-EGFP

  • A. V. Yantsevich
  • A. A. Gilep
  • S. A. UsanovEmail author
Article

Abstract

The conformational stabilities of chimeric protein Hmwb5-EGFP and its constituents (cytochrome b 5 and enhanced green fluorescent protein) in guanidine hydrochloride solutions are reported in this paper. Intensity of fluorescence of tryptophan residues, intensity of EGFP fluorescence in the visible region, absorbance of cytochrome b 5 heme and EGFP fluorophore, and fluorescence anisotropy were used to follow the unfolding process. Thermodynamic parameters of protein unfolding were obtained using different approaches. The data were analyzed using a two-stage model and a linear extrapolation method. Unfolding of protein molecules was additionally monitored by measuring Stern-Volmer constants for tryptophan fluorescence quenching by acrylamide, cesium, and iodide. The accessibility of tryptophan residues of both components in the fusion molecule is lower than in the separate molecules. The thermodynamic stability of the protein globules in the fusion protein is much lower than in the individual protein molecules in solution, the difference in free energy of unfolding being more considerable for cytochrome b 5 (29 ± 4 and 13 ± 2 kJ/mol) than for EGFP (26 ± 0.9 and 20 ± 2.7 kJ/mol). The data indicate that artificial protein fusion can greatly affect total structural stability, and in the case of cytochrome b 5 and EGFP it results in decrease in free energy of transition from native to denatured unfolded form and consequently to decrease in thermodynamic stability of protein globules compared to the separate proteins.

Key words

microsomal cytochrome b5 green fluorescent protein fluorescence folding conformational stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilep, A. A., Guryev, O. L., Usanov, S. A., and Estabrook, R. W. (2001) Biochem. Biophys. Res. Commun., 284, 937–941.PubMedCrossRefGoogle Scholar
  2. 2.
    Gilep, A. A., Guryev, O. L., Usanov, S. A., and Estabrook, R. W. (2001) Arch. Biochem. Biophys., 390, 222–234.PubMedCrossRefGoogle Scholar
  3. 3.
    Gilep, A. A., Guryev, O. L., Usanov, S. A., and Estabrook, R. W. (2001) Arch. Biochem. Biophys., 390, 215–221.PubMedCrossRefGoogle Scholar
  4. 4.
    Munro, A. W., Lindsay, J. G., Coggins, J. R., Kelly, S. M., and Price, N. C. (1996) Biochim. Biophys. Acta, 1296, 127–137.PubMedGoogle Scholar
  5. 5.
    Eiben, S., Bartelmas, H., and Urlacher, V. B. (2007) Appl. Microbiol. Biotechnol., 75, 1055–1061.PubMedCrossRefGoogle Scholar
  6. 6.
    Vergeres, G., and Waskell, L. (1995) Biochimie, 77, 604–620.Google Scholar
  7. 7.
    Schenkman, J. B., and Jansson, I. (2003) Pharmacol. Ther., 97, 139–152.PubMedCrossRefGoogle Scholar
  8. 8.
    Vergeres, G., Ramsden, J., and Waskell, L. (1995) J. Biol. Chem., 270, 3414–3422.PubMedCrossRefGoogle Scholar
  9. 9.
    Kozutsumi, Y., Kawano, T., Yamakawa, T., and Suzuki, A. (1990) J. Biochem., 108, 704–706.PubMedGoogle Scholar
  10. 10.
    Hultquist, D. E., and Passon, P. G. (1971) Nat. New Biol., 229, 252–254.PubMedCrossRefGoogle Scholar
  11. 11.
    Takematsu, H., Kawano, T., Koyama, S., Kozutsumi, Y., Suzuki, A., and Kawasaki, T. (1994) J. Biochem., 115, 381–386.PubMedGoogle Scholar
  12. 12.
    Hildebrandt, A., and Estabrook, R. W. (1971) Arch. Biochem. Biophys., 143, 66–79.PubMedCrossRefGoogle Scholar
  13. 13.
    Hlavica, P. (1984) Arch. Biochem. Biophys., 228, 600–608.PubMedCrossRefGoogle Scholar
  14. 14.
    Porter, T. D. (2002) J. Biochem. Mol. Toxicol., 16, 311–316.PubMedCrossRefGoogle Scholar
  15. 15.
    Guryev, O., Carvalho, R. A., Usanov, S., Gilep, A., and Estabrook, R. W. (2003) Proc. Natl. Acad. Sci. USA, 100, 14754–14759.PubMedCrossRefGoogle Scholar
  16. 16.
    Guryev, O. L., Gilep, A. A., Usanov, S. A., and Estabrook, R. W. (2001) Biochemistry, 40, 5018–5031.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamazaki, H., Shimada, T., Martin, M. V., and Guengerich, F. P. (2001) J. Biol. Chem., 276, 30885–30891.PubMedCrossRefGoogle Scholar
  18. 18.
    Yantsevich, A. V., Harnostai, I. N., Lukashevich, O. P., Gilep, A. A., and Usanov, S. A. (2007) Biochemistry (Moscow), 72, 77–83.CrossRefGoogle Scholar
  19. 19.
    Porath, J., and Olin, B. (1983) Biochemistry, 22, 1621–1630.PubMedCrossRefGoogle Scholar
  20. 20.
    Chudaev, M. V., and Usanov, S. A. (1997) Biochemistry (Moscow), 62, 401–411.Google Scholar
  21. 21.
    Tsien, R. Y. (1998) Annu. Rev. Biochem., 67, 509–544.PubMedCrossRefGoogle Scholar
  22. 22.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  23. 23.
    Pace, C. N. (1986) Meth. Enzymol., 131, 266–280.PubMedCrossRefGoogle Scholar
  24. 24.
    Eftink, M. R. (1998) Biochemistry (Moscow), 63, 276–284.Google Scholar
  25. 25.
    Pfeil, W. (1981) Mol. Cell Biochem., 40, 3–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Manyusa, S., Mortuza, G., and Whitford, D. (1999) Biochemistry, 38, 14352–14362.PubMedCrossRefGoogle Scholar
  27. 27.
    Manyusa, S., and Whitford, D. (1999) Biochemistry, 38, 9533–9540.PubMedCrossRefGoogle Scholar
  28. 28.
    Pfeil, W. (1993) Protein Sci., 2, 1497–1501.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang, J. R., Craggs, T. D., Christodoulou, J., and Jackson, S. E. (2007) J. Mol. Biol., 370, 356–371.PubMedCrossRefGoogle Scholar
  30. 30.
    Andrews, B. T., Gosavi, S., Finke, J. M., Onuchic, J. N., and Jennings, P. A. (2008) Proc. Natl. Acad. Sci. USA, 105, 12283–12288.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Yantsevich
    • 1
  • A. A. Gilep
    • 1
  • S. A. Usanov
    • 1
    Email author
  1. 1.Institute of Bioorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations