Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 5, pp 509–517 | Cite as

Manganese-dependent carboanhydrase activity of photosystem II proteins

  • A. V. ShitovEmail author
  • O. V. Pobeguts
  • T. N. Smolova
  • S. I. Allakhverdiev
  • V. V. Klimov
Article

Abstract

Four sources of carbonic anhydrase (CA) activity in submembrane preparations of photosystem II (PS II) isolated from pea leaves were examined. Three of them belong to the hydrophilic proteins of the oxygen-evolving complex of PS II with molecular mass 33 kDa (protein PsbO), 24 kDa (protein PsbP), and 18 kDa (protein PsbQ). The fourth source of CA activity is associated with a pigment-protein complex of PS II after removing three hydrophilic proteins by salt treatment. Except for protein PsbQ, the CA activity of all these proteins depends on the presence of Mn2+: the purified protein PsbO did not show CA activity before adding Mn2+ into the medium (concentration of Mn2+ required for 50% effect, EC50, was 670 μM); CA activity of protein mixture composed of PsbP and PsbQ increased more than 5-fold upon adding Mn2+ (EC50 was 45 μM). CA activity of purified protein PsbP increased 2-fold in the presence of 200 μM Mn2+. As indicated for the mixture of two proteins (PsbP and PsbQ), Mg2+, Ca2+, and Zn2+, in contrast to Mn2+, suppressed CA activity (both initial and Mn2+-induced activity). Since the found sources of CA activity demonstrated properties different from ones of typical CA (need for Mn2+, insensitivity or low sensitivity to acetazolamide or ethoxyzolamide) and such CA activity was found only among PS II proteins, we cannot exclude that they belong to the type of Mn-dependent CA associated with PS II.

Key words

photosystem II carbonic anhydrase activity oxygen-evolving complex hydrophilic proteins of PS II-PsbO PsbP PsbQ 

Abbreviations

AZ

acetazolamide

BSA

bovine serum albumin

CA

carbonic anhydrase

Chl

chlorophyll

EC50

concentration of a compound necessary to produce 50% of its maximal effect

EZ

ethoxyzolamide

LHC II

light-harvesting complex 2

PS I

photosystem I

PS II

photosystem II

RC

reaction center

WOC

water oxidizing complex

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xiong, J., Subramanigm, S., and Govindjee (1996) Protein Sci., 5, 2054–2073.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Science, 303, 1981–1997.CrossRefGoogle Scholar
  3. 3.
    Wydrzynski, T., and Govindjee (1975) Biochim. Biophys. Acta, 387, 403–408.PubMedCrossRefGoogle Scholar
  4. 4.
    Diner, B. A., and Pertrouleas, V. (1990) Biochim. Biophys. Acta, 1015, 141–149.CrossRefGoogle Scholar
  5. 5.
    Van Rensen, J. J. S., and Klimov, V. V. (2005) in Photosystem II — The Light-Driven Water: Plastoquinone Oxidoreductase (Wydrzynski, T. J., and Satoh, K., eds.) Springer, Dordrecht, pp. 329–345.Google Scholar
  6. 6.
    Stemler, A. (1997) Physiol. Plant., 99, 348–353.CrossRefGoogle Scholar
  7. 7.
    Moroney, J. V., Bartlett, S. G., and Samuelsson, G. (2001) Plant. Cell. Environ., 24, 141–153.CrossRefGoogle Scholar
  8. 8.
    Pronina, N. A. (2000) Russ. J. Plant Physiol., 47, 801–810.Google Scholar
  9. 9.
    Ivanov, B. N., Ignatova, L. K., and Romanova, A. K. (2007) Russ. J. Plant Physiol., 54, 185–195.CrossRefGoogle Scholar
  10. 10.
    Hewett-Emmett, D., and Tashian, R. E. (1996) Mol. Phylogen. Evolut., 5, 50–77.CrossRefGoogle Scholar
  11. 11.
    Christianson, D. W., and Cox, J. D. (1999) Annu. Rev. Biochem., 68, 33–57.PubMedCrossRefGoogle Scholar
  12. 12.
    Tiwari, A., Kumar, P., Singh, S., and Ansari, S. A. (2005) Photosynthetica, 43, 1–11.CrossRefGoogle Scholar
  13. 13.
    Earnhardt, J. N., Qian, M., Tu, C., Lakkis, M. M., Ber, N. C., Laipis, P. J., Tashian, R. E., and Silverman, D. N. (1998) Biochemistry, 37, 10837–10845.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith, K. S., and Ferry, J. G. (2000) FEMS Microbiol. Rev., 24, 335–366.PubMedCrossRefGoogle Scholar
  15. 15.
    Alber, B. E., Colangelo, C. M., Dong, J., Stalhandske, C. M., Baird, T. T., Tu, C., Fierk, C. A., Silverman, D. N., Scott, R. A., and Ferry, J. G. (1999) Biochemistry, 38, 13119–13128.PubMedCrossRefGoogle Scholar
  16. 16.
    Karlsson, J., Clarke, F. K., Chen, Z. Y., Hugghins, S. Y., Park, Y. I., Husic, H. D., Moroney, J. V., and Samuelsson, G. (1998) EMBO J., 17, 1208–1216.PubMedCrossRefGoogle Scholar
  17. 17.
    Villarejo, A., Shutova, T. V., Moskvin, O. V., Forssen, M., Klimov, V. V., and Samuelsson, G. (2002) EMBO J., 21, 1930–1938.PubMedCrossRefGoogle Scholar
  18. 18.
    Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J., Terentyev, V., Chernyshov, S., Andersson, B., Allakhverdiev, S. I., Klimov, V. V., Dau, H., Junge, W., and Samuelsson, G. (2008) EMBO J., 27, 782–791.PubMedCrossRefGoogle Scholar
  19. 19.
    Vaklinova, S. G., Goushtina, L. M., and Lazova, G. N. (1982) Comptes rendus de I’ Academ. bulgare des Sci., 35, 1721–1724.Google Scholar
  20. 20.
    Pronina, N. A., Allakhverdiev, S. I., Kupriyanova, E. V., Klyachko-Gurvich, G. L., and Klimov, V. V. (2002) Russ. J. Plant Physiol., 49, 341–349.Google Scholar
  21. 21.
    Rudenko, N. N., Ignatova, L. K., Kamornitskaya, V. B., and Ivanov, B. N. (2006) Dokl. Biokhim. Biofiz., 408, 155–157.Google Scholar
  22. 22.
    Ignatova, L. K., Rudenko, N. N., Khristin, M. S., and Ivanov, B. N. (2006) Biochemistry (Moscow), 71, 525–532.CrossRefGoogle Scholar
  23. 23.
    Yih-Kuang Lu, Theg, S., and Stemler, A. (2005) Plant Cell Physiol., 46, 1–9.CrossRefGoogle Scholar
  24. 24.
    Yih-Kuang Lu and Stemler, A. (2007) Biochim. Biophys. Acta, 1767, 633–638.PubMedCrossRefGoogle Scholar
  25. 25.
    Khristin, M. S., Ignatova, L. K., Rudenko, N. N., Ivanov, B. N., and Klimov, V. V. (2004) FEBS Lett., 577, 305–308.PubMedCrossRefGoogle Scholar
  26. 26.
    Ono, T., and Inoue, Y. (1983) FEBS Lett., 164, 255–260.CrossRefGoogle Scholar
  27. 27.
    McConnell, I. L., Badger, M. R., Wydrzynski, T., and Hillier, W. (2007) Biochim. Biophys. Acta, 1767, 639–647.PubMedCrossRefGoogle Scholar
  28. 28.
    Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) FEBS Lett., 134, 231–234.CrossRefGoogle Scholar
  29. 29.
    Ford, R. C., and Evans, M. C. W. (1983) FEBS Lett., 160, 159–164.CrossRefGoogle Scholar
  30. 30.
    Klimov, V. V., Allakhverdiev, S. I., Shuvalov, V. A., and Krasnovsky, A. A. (1982) FEBS Lett., 148, 307–312.CrossRefGoogle Scholar
  31. 31.
    Miyao, M., and Murata, N. (1983) Biochim. Biophys. Acta, 725, 87–93.CrossRefGoogle Scholar
  32. 32.
    Calderone, V., Trabucco, M., Vujicic, A., Battistutta, R., Giacometti, G., Andreucci, F., Barbato, R., and Zanotti, G. (2003) EMBO J., 4, 900–905.CrossRefGoogle Scholar
  33. 33.
    Ostroumov, E. E., Fadeev, V. V., Khristin, M. S., Paschenko, V. Z., and Tusov, V. B. (2007) Biofizika, 52, 855–860.PubMedGoogle Scholar
  34. 34.
    Khristin, M. S., Nikitishena, O. V., Smolova, T. N., and Zastrizhnaya, O. M. (1997) Biol. Membr., 14, 133–141.CrossRefGoogle Scholar
  35. 35.
    Shuvalov, V. A., Klimov, V. V., and Krasnovsky, A. A. (1976) Mol. Biol. (Moscow), 10, 326–339.Google Scholar
  36. 36.
    Klimov, V. V., Allakhverdiev, S. I., Shutilova, N. I., and Krasnovsky, A. A. (1980) Fiziol. Rast., 27, 315–326.Google Scholar
  37. 37.
    Wilbur, K. M., and Anderson, N. G. J. (1948) Biol. Chem., 176, 147–154.Google Scholar
  38. 38.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  39. 39.
    Arnon, D. I. (1949) Plant Physiol., 24, 1–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Lowry, D., Rosenbrough, N., Farr, L., and Randall, R. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  41. 41.
    Shutova, T., Irrgang, K. D., Klimov, V. V., and Renger, G. (2000) FEBS Lett., 467, 137–140.PubMedCrossRefGoogle Scholar
  42. 42.
    Shutova, T., Nikitina, J., Deikus, G., Andersson, B., Klimov, V. V., and Samuelsson, G. (2005) Biochemistry, 44, 15182–15192.PubMedCrossRefGoogle Scholar
  43. 43.
    Oh-oka, H., Tanaka, S., Wada, K., Kuwabara, T., and Murata, N. (1986) FEBS Lett., 197, 63–66.CrossRefGoogle Scholar
  44. 44.
    Tanaka, S., and Wada, K. (1988) Photosynth. Res., 17, 255–266.CrossRefGoogle Scholar
  45. 45.
    Shutova, T., Irrgang, K.-D., Shubin, V., Klimov, V. V., and Renger, G. (1997) Biochemistry, 36, 6350–6358.PubMedCrossRefGoogle Scholar
  46. 46.
    Bondarava, N., Sun Un, and Krieger-Liszkay, A. (2007) Biochim. Biophys. Acta, 1767, 583–588.PubMedCrossRefGoogle Scholar
  47. 47.
    Smith, K. S., and Ferry, J. G. (1999) J. Bacteriol., 181, 6247–6253.PubMedGoogle Scholar
  48. 48.
    Wells, J. W., Kandel, S. I., Kandel, M., and Gornall, A. G. (1974) J. Biol. Chem., 250, 3522–3531.Google Scholar
  49. 49.
    Tripp, B. C., Bell, C. B., Cruz, F., Krebs, C., and Ferry, J. G. (2004) J. Biol. Chem., 279, 6683–6687.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Shitov
    • 1
    Email author
  • O. V. Pobeguts
    • 1
  • T. N. Smolova
    • 1
  • S. I. Allakhverdiev
    • 1
  • V. V. Klimov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations