Biochemistry (Moscow)

, Volume 74, Issue 4, pp 461–466 | Cite as

Superoxide formation as a result of interaction of L-lysine with dicarbonyl compounds and its possible mechanism

  • K. B. Shumaev
  • S. A. Gubkina
  • E. M. Kumskova
  • G. S. Shepelkova
  • E. K. Ruuge
  • V. Z. LankinEmail author


The EPR signal recorded in reaction medium containing L-lysine and methylglyoxal is supposed to come from the anion radical (semidione) of methylglyoxal and cation radical of methylglyoxal dialkylimine. These free radical inter-mediates might be formed as a result of electron transfer from dialkylimine to methylglyoxal. The EPR signal was observed in a nitrogen atmosphere, whereas only trace amounts of free radicals were registered under aerobic conditions. It has been established that the decay of methylglyoxal anion radical on aeration of the medium is inhibited by superoxide dismutase. Using the methods of EPR spectroscopy and lucigenin-dependent chemiluminescence, it has been shown that nonenzymatic generation of free radicals including superoxide anion radical takes place during the interaction of L-lysine with methylglyoxal — an intermediate of carbonyl stress — at different (including physiological) pH values. In the course of analogous reaction of L-lysine with malondialdehyde (the secondary product of the free radical derived oxidation of lipids), the formation of organic free radicals or superoxide radical was not observed.

Key words

free radicals malondialdehyde methylglyoxal modification of amino acids 



low density lipoproteins






nitro blue tetrazolium


superoxide dismutase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lo, T. W. C., Westwood, M. E., McLellan, A. C., Selwood, T., and Thornalley, P. J. (1994) J. Biol. Chem., 269, 32299–32305.PubMedGoogle Scholar
  2. 2.
    Requena, J. R., Fu, M. X., Ahmed, M. U., Jenkins, A. J., Lyons, T. J., Baynes, J. W., and Thorpe, S. R. (1997) Biochem. J., 322, 317–325.PubMedGoogle Scholar
  3. 3.
    Stadtman, E. R., and Berlett, B. S. (1998) Drug Metab. Rev., 30, 225–243.PubMedCrossRefGoogle Scholar
  4. 4.
    Brennan, M. L., and Hazen, S. L. (2003) Amino Acids, 25, 365–374.PubMedCrossRefGoogle Scholar
  5. 5.
    Stadtman, E. R., and Levine, R. L. (2003) Amino Acids, 25, 207–218.PubMedCrossRefGoogle Scholar
  6. 6.
    Thorpe, S. R., and Baynes, J. W. (2003) Amino Acids, 25, 275–281.PubMedCrossRefGoogle Scholar
  7. 7.
    Uchida, K. (2003) Amino Acids, 25, 249–257.PubMedCrossRefGoogle Scholar
  8. 8.
    Bourajjaj, M., Stehouwer, C. D. A., van Hinsbergh, V. W. M., and Schalkwijk, C. G. (2003) Biochem. Soc. Trans., 31, 1400–1402.PubMedCrossRefGoogle Scholar
  9. 9.
    Goldin, A., Beckman, J. A., Schmidt, A. M., and Creager, M. A. (2006) Circulation, 114, 597–605.PubMedCrossRefGoogle Scholar
  10. 10.
    Rosca, M. G., Mustada, T. G., Kinter, M. T., Ozdemir, A. M., Kern, T. S., Szweda, L. I., Brownlee, M., Monnier, V. M., and Weiss, M. F. (2005) Am. J. Physiol. Renal. Physiol., 289, 420–430.CrossRefGoogle Scholar
  11. 11.
    Lankin, V. Z., Tikhaze, A. K., Kapelko, V. I., Shepelkova, G. S., Shumaev, K. B., Panasenko, O. M., Konovalova, G. G., and Belenkov, Yu. N. (2007) Biochemistry (Moscow), 72, 1081–1090.CrossRefGoogle Scholar
  12. 12.
    Yim, H.-S., Kang, S.-O., Hah, Y.-Ch., Chock, P. B., and Yim, M. B. (1995) J. Biol. Chem., 270, 28228–28233.PubMedCrossRefGoogle Scholar
  13. 13.
    Thornalley, P. J. (1985) Environ. Health Perspect., 64, 297–307.PubMedCrossRefGoogle Scholar
  14. 14.
    Thornalley, P. J. (1993) Mol. Aspects Med., 14, 287–371.PubMedCrossRefGoogle Scholar
  15. 15.
    Suji, G., and Sivakami, S. (2007) Amino Acids, 33, 615–621.PubMedCrossRefGoogle Scholar
  16. 16.
    McLaughlin, J. A., Pethig, R., and Szent-Gyorgyi, A. (1980) Proc. Natl. Acad. Sci. USA, 77, 949–951.PubMedCrossRefGoogle Scholar
  17. 17.
    Kamiya, N. M., and Kamiya, H. (2001) Nucleic Acids Res., 29, 3433–3438.PubMedCrossRefGoogle Scholar
  18. 18.
    Tarpey, M. M., Wink, D. A., and Grisham, M. B. (2004) Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, R431–R444.PubMedGoogle Scholar
  19. 19.
    Bisby, R. H., and Paker, A. W. (1991) FEBS Lett., 290, 205–208.PubMedCrossRefGoogle Scholar
  20. 20.
    D’Alessandro, N., Bianchi, G., Fang, X. J. F., Schuchmann, H.-P., and von Sontag, C. (2000) J. Chem. Perkin Trans., 2, 1862–1867.CrossRefGoogle Scholar
  21. 21.
    Berberova, N. T. (1999) Soros Ed. J., 5, 48–53.Google Scholar
  22. 22.
    Griffiths, H. R. (2005) The Handbook of Environmental Chemistry, 2, 33–62.Google Scholar
  23. 23.
    Mason, R. P. (1990) Environ. Health Perspect., 87, 237–243.PubMedCrossRefGoogle Scholar
  24. 24.
    Niviere, V., and Fontecave, M. (1995) in Analysis of Free Radicals in Biological Systems (Favier, A. E., Cadet, J., Kalyanaraman, B., Fontecave, M., and Pierre, J.-L., eds.) Bizkauser, Grenoble, pp. 17–18.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • K. B. Shumaev
    • 1
    • 2
  • S. A. Gubkina
    • 1
  • E. M. Kumskova
    • 1
  • G. S. Shepelkova
    • 1
  • E. K. Ruuge
    • 1
  • V. Z. Lankin
    • 1
    Email author
  1. 1.Russian Cardiology Research CenterMoscowRussia
  2. 2.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations