Biochemistry (Moscow)

, Volume 74, Issue 4, pp 445–451 | Cite as

Inactivation of genes encoding superoxide dismutase modifies yeast response to S-nitrosoglutathione-induced stress

  • O. V. Lushchak
  • N. Z. Nykorak
  • T. Ohdate
  • Y. Inoue
  • V. I. LushchakEmail author


Antioxidant enzymes can modify cell response to nitrosative stress induced, for example, by nitric oxide or compounds decomposing with its formation. Therefore, we investigated the effects of S-nitrosoglutathione (GSNO) on cell survival, activity of antioxidant enzymes, and concentrations of reduced and oxidized glutathione in parental and isogenic strains defective in Cu,Zn- or Mn-superoxide dismutases (Cu,Zn-SOD and Mn-SOD, respectively), or in both of them. Stress was induced by incubation of the yeast with 1–20 mM GSNO. The strains used demonstrated different sensitivity to GSNO. A Cu,Zn-SOD-defective strain survived the stress better than the parental strain, while the double mutant was the most sensitive to GSNO. The ·NO-donor at low concentrations (1–5 mM) increased SOD activity, but its high concentrations (10 and 20 mM) decreased it. The activity of catalase in all strains was enhanced by GSNO. Inhibition of protein synthesis by cycloheximide did not prevent the activation of SOD, but it prevented the activation of catalase. These facts suggest that SOD was activated at a posttranslational level and catalase activity was enhanced via de novo synthesis. A GSNO-induced increase in oxidized glutathione level in the studied yeast strains might account for cell killing by GSNO due to the development of oxidative/nitrosative stress.

Key words

yeast superoxide dismutase S-nitrosoglutathione nitric oxide markers of oxidative stress 



glutathione reductase


reduced glutathione




oxidized glutathione


nitric oxide


reactive nitrogen species


superoxide dismutase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jakubowski, W., Bilinski, T., and Bartosz, G. (1999) Biochim. Biophys. Acta, 1472, 395–398.PubMedGoogle Scholar
  2. 2.
    Horan, S., Bourges, I., and Meunier, B. (2006) Yeast, 23, 519–535.PubMedCrossRefGoogle Scholar
  3. 3.
    Sahoo, R., Dutta, T., Das, A., Ray, S. S., Sengupta, R., and Ghosh, S. (2006) Free Rad. Biol. Med., 40, 625–631.PubMedCrossRefGoogle Scholar
  4. 4.
    Cassanova, N., O’Brien, K. M., Stahl, B. T., McClure, T., and Poyton, R. O. (2005) J. Biol. Chem., 280, 7645–7653.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu, L., Zeng, M., Hausladen, A., Heitman, J., and Stamler, J. S. (2000) Proc. Natl. Acad. Sci. USA, 97, 4672–4676.PubMedCrossRefGoogle Scholar
  6. 6.
    Noble, D. R., Swift, H. R., and Williams, D. L. H. (1999) Chem. Commun., 2317–2318.Google Scholar
  7. 7.
    Liu, S. X., Xuan, B. O., Chen, Z., Varma, R. S., and Chiou, G. C. (1997) J. Ocul. Pharmacol. Ther., 13, 105–114.PubMedCrossRefGoogle Scholar
  8. 8.
    Gralla, E. B., and Valentine, J. S. (1991) J. Bacteriol., 173, 5918–5920.PubMedGoogle Scholar
  9. 9.
    Lushchak, V., Semchyshyn, H., Lushchak, O., and Mandryk, S. (2005) Biochem. Biophys. Res. Commun., 338, 1739–1744.PubMedCrossRefGoogle Scholar
  10. 10.
    Lushchak, V., Semchyshyn, H., Mandryk, S., and Lushchak, O. (2005) Arch. Biochem. Biophys., 441, 35–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Akerboom, T. P. M., and Sies, H. (1981) Meth. Enzymol., 77, 373–382.PubMedCrossRefGoogle Scholar
  12. 12.
    Bradford, M. M. (1976) Anal. Biochem., 72, 289–292.CrossRefGoogle Scholar
  13. 13.
    Klink, M., Swierzko, A., and Sulowska, Z. (2001) Apmis, 109, 493–499.PubMedCrossRefGoogle Scholar
  14. 14.
    Gralla, E. B. (1997) in Oxidative Stress and the Molecular Biology of Antioxidant Defenses (Scandalios, J. G., ed.) Cold Spring Harbor Press, N. Y., pp. 495–525.Google Scholar
  15. 15.
    Bayliak, M. M., Semchyshyn, H. M., and Lushchak, V. I. (2006) Biochemistry (Moscow), 71, 1013–1020.CrossRefGoogle Scholar
  16. 16.
    Alvarez, B., and Radi, R. (2003) Amino Acids, 25, 295–311.PubMedCrossRefGoogle Scholar
  17. 17.
    Lushchak, O. V., and Lushchak, V. I. (2008) Redox Report, 13, 144–152.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim, Y.-M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W. D., and Lancaster, J. R. (1995) Adv. Pharmacol., 34, 277–291.PubMedCrossRefGoogle Scholar
  19. 19.
    Wink, D. A., Hanbauer, I., Grisham, M. B., Laval, F., Nims, R. W., Laval, J., Cook, J., Pacelli, R., Liebmann, J., Krishna, M., Ford, R. C., and Mitchell, J. B. (1996) Curr. Top. Cell. Regul., 34, 159–187.PubMedCrossRefGoogle Scholar
  20. 20.
    Halliwell, B., and Gutterige, J. M. C. (1989) Free Radicals in Biology and Medicine, Clarendon Press, Oxford.Google Scholar
  21. 21.
    Longo, V. D., Gralla, E. B., and Valentine, J. S. (1996) J. Biol. Chem., 271, 12275–12280.PubMedCrossRefGoogle Scholar
  22. 22.
    Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) J. Biol. Chem., 266, 4244–4250.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. V. Lushchak
    • 1
  • N. Z. Nykorak
    • 1
  • T. Ohdate
    • 2
  • Y. Inoue
    • 2
  • V. I. Lushchak
    • 1
    Email author
  1. 1.Department of BiochemistryVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  2. 2.Division of Applied Life SciencesGraduate School of AgricultureKyotoJapan

Personalised recommendations