Biochemistry (Moscow)

, Volume 74, Issue 4, pp 421–429 | Cite as

Effect of peripheral benzodiazepine receptor (PBR/TSPO) ligands on opening of Ca2+-induced pore and phosphorylation of 3.5-kDa polypeptide in rat brain mitochondria

  • O. V. Krestinina
  • D. E. Grachev
  • I. V. Odinokova
  • G. Reiser
  • Yu. V. Evtodienko
  • T. S. AzarashviliEmail author


The effect of nanomolar concentrations of PBR/TSPO ligands—Ro 5-4864, PK11195, and PPIX—on Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria was investigated. PBR/TSPO agonist Ro 5-4864 (100 nM) and endogenous ligand PPIX (1 μM) were shown to stimulate PTP opening, while antagonist PK11195 (100 nM) suppressed this process. Correlation between PBR ligand action on PTP opening and phosphorylation of a 3.5 kDa polypeptide was investigated. In intact brain mitochondria, incorporation of [γ-32P]ATP into 3.5 kDa peptide was decreased in the presence of Ro 5-4864 and PPIX and increased in the presence of PK11195. At threshold Ca2+ concentrations leading to PTP opening, PBR/TSPO ligands were found to stimulate dephosphorylation of the 3.5 kDa peptide. Specific anti-PBR/TSPO antibody prevented both PTP opening and dephosphorylation of the 3.5-kDa peptide. The peptide was identified as subunit c of FoF1-ATPase by Western blot using specific anti-subunit c antibody. The results suggest that subunit c of FoF1-ATPase could be an additional target for PBR/TSPO ligands action, is subjected to Ca2+- and TSPO-dependent phosphorylation/dephosphorylation, and is involved in PTP operation in mitochondria.

Key words

brain mitochondria peripheral benzodiazepine receptor permeability transition pore FoF1-ATPase subunit c PBR/TSPO 



adenine nucleotide translocator


cyclosporin A


isoquinoline-binding protein


peripheral benzodiazepine receptor


translocator protein of peripheral benzodiazepine receptor


1-(2-chlorophenyl-N-methylpropyl)-3-isoquinoline carboxamide


protein kinase A


protoporphyrin IX


permeability transition pore (non-selective Ca2+-induced mitochondrial pore)

Ro 5-4864



tetraphenylphosphonium cation


voltage-dependent anion channel


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. (1992) Proc. Natl. Acad. Sci. USA, 89, 3170–3174.PubMedCrossRefGoogle Scholar
  2. 2.
    Papadopoulos, V., Baraldi, M., Guilarte, T. R., Knudsen, T. B., Lacapere, J. J., Lindemann, P., Norenberg, M. D., Nutt, D., Weizman, A., Zhang, M. R., and Gavish, M. (2006) Trends Pharmacol. Sci., 27, 402–409.PubMedCrossRefGoogle Scholar
  3. 3.
    Anholt, R. R., Pedersen, P. L., de Souza, E. B., and Snyder, S. H. (1986) J. Biol. Chem., 261, 576–583.PubMedGoogle Scholar
  4. 4.
    Antkiewicz-Michaluk, L., Guidottee, A., and Krueger, K. E. (1988) Mol. Pharmacol., 34, 272–278.PubMedGoogle Scholar
  5. 5.
    Mukherjee, S., and Das, S. K. (1989) J. Biol. Chem., 264, 16713–16718.PubMedGoogle Scholar
  6. 6.
    Kinnally, K. W., Zorov, D. B., Antonenko, Yu. N., Snyder, S. H., and McEnery, M. W. (1993) Proc. Natl. Acad. Sci. USA, 90, 1374–1378.PubMedCrossRefGoogle Scholar
  7. 7.
    Venturini, I., Zeneroli, M., Corsi, L., Avallone, R., Farina, F., Alho, H., Baraldi, C., Ferrarese, C., Pecora, N., Frigo, M., Ardizzone, G., Arrigo, A., Pellicci, R., and Baraldi, M. (1998) Life Sci., 63, 1269–1280.PubMedCrossRefGoogle Scholar
  8. 8.
    Hardwick, M., Fertikh, D., Culty, M., Li, H., Vidic, B., and Papadopoulos, V. (1999) Cancer Res., 59, 831–842.PubMedGoogle Scholar
  9. 9.
    Olson, J. M. M., Ciliax, B. J., Mancini, W. R., and Young, A. B. (1988) Eur. J. Pharmacol., 152, 47–53.PubMedCrossRefGoogle Scholar
  10. 10.
    O’Beirne, G. B., Woods, M. J., and Williams, D. C. (1990) Eur. J. Biochem., 188, 137–138.Google Scholar
  11. 11.
    Gonzalez-Polo, R.-A., Carvalho, G., Braun, T., Decaudin, D., Fabre, C., Larochette, N., Perfettini, J.-L., Djavaheri-Mergny, M., Toulyouz-Marfak, I., Codogno, P., Paphael, M., Feuillard, J., and Kroemer, G. (2005) Oncogene, 24, 7503–7513.PubMedCrossRefGoogle Scholar
  12. 12.
    Verma, A., Nye, J. S., and Snyder, S. H. (1987) Proc. Natl. Acad. Sci. USA, 84, 2256–2260.PubMedCrossRefGoogle Scholar
  13. 13.
    Bovolin, P., Schlichting, J., Miyata, M., Ferrarese, C., Guidotti, A., and Alho, H. (1990) Regul. Rept., 29, 267–281.Google Scholar
  14. 14.
    Li, H., and Papadopoulos, V. (1998) Endocrinology, 139, 4991–4997.PubMedCrossRefGoogle Scholar
  15. 15.
    Banati, R. B., Goerres, G. W., Myers, R., Gunn, R. N., Turkheimer, F. E., Kreutzberg, G. W., Brooks, D. J., Jones, T., and Duncan, J. S. (1999) Neurology, 53, 2199–2203.PubMedGoogle Scholar
  16. 16.
    Kinnally, K. W., Zorov, D. B., Antonenko, Y. N., Snyder, S. H., McEnery, M. W., and Tedeschi, H. (1993) Proc. Natl. Acad. Sci. USA, 90, 1374–1378.PubMedCrossRefGoogle Scholar
  17. 17.
    Chelli, B., Falleni, A., Salvetti, F., Gremigni, V., Lucachini, A., and Martini, C. (2001) Biochem. Pharmacol., 61, 695–705.PubMedCrossRefGoogle Scholar
  18. 18.
    Casellas, P., Galigue, S., and Basile, A. S. (2002) Neurochem. Int., 40, 475–486.PubMedCrossRefGoogle Scholar
  19. 19.
    Kokoszka, J. E., Waymire, K. G., Levy, S. E., Cai, J., Jones, D. P., McGregor, G. R., and Wallace, D. C. (2004) Nature, 427, 461–465.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, H., Degenhardt, B., Teper, G., and Papadopoulos, V. (2001) Proc. Natl. Acad. Sci. USA, 98, 1267–1272.PubMedCrossRefGoogle Scholar
  21. 21.
    Azarashvili, T. S., Grachev, D. E., Krestinina, O. V., Evtodienko, Yu. V., Yurkov, I. S., Papadopoulos, V., and Reizer, G. (2007) Cell Calcium, 42, 27–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Azarashvili, T. S., Krestinina, O. V., Yurkov, I. S., Evtodienko, Yu. V., and Reiser, G. (2005) J. Neurochem., 94, 1054–1062.PubMedCrossRefGoogle Scholar
  23. 23.
    Azarashvili, T. S., Odinokova, I. V., and Evdtodienko, Yu. V. (1999) Biochemistry (Moscow), 64, 556–560.Google Scholar
  24. 24.
    Cleary, J., Jonson, K. M., Opipari, A. W., and Glick, G. D. (2007) Bioorg. Med. Chem. Lett., 17, 1667–1670.PubMedCrossRefGoogle Scholar
  25. 25.
    Lai, J. C., and Clarck, J. B. (1979) Meth. Enzymol., 55, 51–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  27. 27.
    Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979) J. Membr. Biol., 49, 105–121.PubMedCrossRefGoogle Scholar
  28. 28.
    Azarashvily, T. S., Tyynela, J., Baumann, M., Evtodienko, Yu. V., and Saris, N.-E. (2000) Biochem. Biophys. Res. Commun., 270, 741–744.PubMedCrossRefGoogle Scholar
  29. 29.
    Laemmli, U. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  30. 30.
    Azarashvili, T., Krestinina, O., Odinokova, I., Evtodienko, Y., and Reiser, G. (2003) Cell Calcium, 34, 253–259.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, R., Fearnley, I. M., Palmer, D. N., and Walker, J. E. (2004) J. Biol. Chem., 279, 21883–21887.PubMedCrossRefGoogle Scholar
  32. 32.
    Hagopian, K. (1999) Analyt. Biochem., 273, 240–251.PubMedCrossRefGoogle Scholar
  33. 33.
    Gavish, M., Bachman, I., Shoukrun, R., Katz, Y., Veeman, L., Weisinger, G., and Weizman, A. (1999) Pharmacol. Rev., 51, 629–650.PubMedGoogle Scholar
  34. 34.
    Decaudin, D., Castedo, M., Nemati, F., Beurdeley-Thomas, A., de Pinieux, G., Caron, A., Pouillart, P., Wijdenes, J., Rouillard, D., Kroemer, G., and Poupon, M. F. (2002) Cancer Res., 62, 1388–1393.PubMedGoogle Scholar
  35. 35.
    Fennel, D. A., Corbo, M., Pallaska, A., and Cotter, F. E. (2001) Br. J. Cancer, 84, 1397–1404.CrossRefGoogle Scholar
  36. 36.
    Fischer, R., Schmitt, M., Bode, J. G., and Haussinger, D. (2001) Gastroenterology, 120, 1212–1226.PubMedCrossRefGoogle Scholar
  37. 37.
    Parker, M. A., Bazan, H. E., Marcheselli, V., Rodrigues de Turco, E. B., and Bazan, N. G. (2002) J. Neurosci. Res., 69, 39–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Lui, J., Li, H., and Papadopoulos, V. (2003) J. Steroid Biochem. Mol. Biol., 85, 275–283.CrossRefGoogle Scholar
  39. 39.
    Li, H., Degenhardt, B., Tobin, D., Yao, Z. X., Tasken, K., and Papadopoulos, V. (2001) Mol. Endocrinol., 15, 2211–2228.PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshinaka, K., Kumanogoh, H., Nakamura, S., and Maekawa, S. (2004) Neurosci. Lett., 363, 168–172.PubMedCrossRefGoogle Scholar
  41. 41.
    Peters, C., Bayer, M. J., Buhler, S., Andersen, J. S., Mann, M., and Mayer, A. (2001) Nature, 409, 581–588.PubMedCrossRefGoogle Scholar
  42. 42.
    Bayer, M. J., Reese, C., Buhler, S., Peters, C., and Mayer, A. (2003) J. Cell. Biol., 162, 211–222.PubMedCrossRefGoogle Scholar
  43. 43.
    Laursen, R. A., Samiullah, M., and Lees, M. B. (1983) FEBS Lett., 161, 71–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Vinogradov, A. D. (1999) Biochemistry (Moscow), 64, 1219–1229.Google Scholar
  45. 45.
    Ko, Y. H., Delannoy, M., Hullihen, J., Chiu, W., and Pedersen, P. L. (2003) J. Biol. Chem., 278, 12305–12309.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. V. Krestinina
    • 1
  • D. E. Grachev
    • 1
  • I. V. Odinokova
    • 1
  • G. Reiser
    • 2
  • Yu. V. Evtodienko
    • 1
  • T. S. Azarashvili
    • 1
    Email author
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Department of MedicineInstitute of Neurobiochemistry, Otto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations