Advertisement

Biochemistry (Moscow)

, 74:416 | Cite as

Structure of O-antigen and functional characterization of O-antigen gene cluster of Salmonella enterica O47 containing ribitol phosphate and 2-acetimidoylamino-2,6-dideoxy-L-galactose

  • A. V. PerepelovEmail author
  • B. Liu
  • S. N. Senchenkova
  • A. S. Shashkov
  • L. Feng
  • L. Wang
  • Y. A. Knirel
Article

Abstract

An O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Salmonella enterica O47 and studied by sugar analysis along with one- and two-dimensional 1H- and 13C-NMR spectroscopy. The following structure of the linear ribitol phosphate-containing repeating unit of the O-polysaccharide was established: \( \to 2) - D - Ribitol - 5 - P - (O \to 6) - \alpha - D - Galp - (1 \to 3) - \alpha - L - FucpNAm - (1 \to 3) - \beta - D - GlcpNAc - (1 \to , \) where FucNAm stands for 2-acetimidoylamino-2,6-dideoxy-L-galactose. About 10% of Gal is O-acetylated at position 4 and another minor O-acetyl group is present at an undetermined position. Functions of the S. enterica O47 antigen biosynthetic genes were tentatively assigned by comparison with gene databases and found to be in agreement with the O-polysaccharide structure. A comparison of the O-antigen gene clusters of S. enterica O47 and E. coli O145 suggested their close evolutionary relationship.

Key words

Salmonella enterica lipopolysaccharide bacterial polysaccharide structure acetimidoyl group ribitol phosphate O-antigen gene cluster 

Abbreviations

COSY

correlation spectroscopy

HSQC

heteronuclear single-quantum coherence

OPS

O-polysaccharide (O-antigen)

ROESY

rotating-frame nuclear Overhauser effect spectroscopy

TOCSY

total correlation spectroscopy

References

  1. 1.
    Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M., and Tauxe, R. V. (1999) Emerg. Infect. Dis., 5, 607–625.PubMedGoogle Scholar
  2. 2.
    Kauffmann, F. (1966) The Bacteriology of Enterobacteriaceae, Williams and Wilkins, Baltimore.Google Scholar
  3. 3.
    Feng, L., Senchenkova, S. N., Yang, J., Shashkov, A. S., Tao, J., Guo, H., Cheng, J., Ren, Y., Knirel, Y. A., Reeves, P., and Wang, L. (2004) J. Bacteriol., 186, 4510–4519.PubMedCrossRefGoogle Scholar
  4. 4.
    Robbins, P. W., and Uchida, T. (1962) Biochemistry, 1, 323–335.PubMedCrossRefGoogle Scholar
  5. 5.
    Westphal, O., and Jann, K. (1965) Meth. Carbohydr. Chem., 5, 83–91.Google Scholar
  6. 6.
    Leontein, K., Lindberg, B., and Lonngren, J. (1978) Carbohydr. Res., 62, 359–362.CrossRefGoogle Scholar
  7. 7.
    Gerwig, G. J., Kamerling, J. P., and Vliegenthart, J. F. G. (1979) Carbohydr. Res., 77, 1–7.CrossRefGoogle Scholar
  8. 8.
    Bock, K., and Pedersen, C. (1983) Adv. Carbohydr. Chem. Biochem., 41, 27–66.CrossRefGoogle Scholar
  9. 9.
    Shashkov, A. S., Lipkind, G. M., Knirel, Y. A., and Kochetkov, N. K. (1988) Magn. Reson. Chem., 26, 735–747.CrossRefGoogle Scholar
  10. 10.
    Stenutz, R., Weintraub, A., and Widmalm, G. (2006) FEMS Microbiol. Rev., 30, 382–403.PubMedCrossRefGoogle Scholar
  11. 11.
    Raetz, C. R. H., and Whitfield, C. (2002) Annu. Rev. Biochem., 71, 635–700.PubMedCrossRefGoogle Scholar
  12. 12.
    Feng, L., Senchenkova, S. N., Tao, J., Shashkov, A. S., Liu, B., Shevelev, S. D., Reeves, P., Xu, J., Knirel, Y. A., and Wang, L. (2005) J. Bacteriol., 187, 758–764.PubMedCrossRefGoogle Scholar
  13. 13.
    Samuel, G., and Reeves, P. (2003) Carbohydr. Res., 338, 2503–2519.PubMedCrossRefGoogle Scholar
  14. 14.
    Mamat, U., Meredith, T. C., Aggarwal, P., Kuhl, A., Kirchhoff, P., Lindner, B., Hanuszkiewicz, A., Sun, J., Holst, O., and Woodard, R. W. (2008) Mol. Microbiol., 67, 633–648.PubMedCrossRefGoogle Scholar
  15. 15.
    Kneidinger, B., O’Riordan, K., Li, J., Brisson, J. R., Lee, J. C., and Lam, J. S. (2003) J. Biol. Chem., 278, 3615–3627.PubMedCrossRefGoogle Scholar
  16. 16.
    King, J. D., Mulrooney, E. F., Vinogradov, E., Kneidinger, B., Mead, K., and Lam, J. S. (2008) J. Bacteriol., 190, 1671–1679.PubMedCrossRefGoogle Scholar
  17. 17.
    Ochman, H., and Wilson, A. C. (1987) J. Mol. Evol., 26, 74–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Sharp, P. M. (1991) J. Mol. Evol., 33, 23–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Samuel, G., Hogbin, J. P., Wang, L., and Reeves, P. R. (2004) J. Bacteriol., 186, 6536–6543.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Perepelov
    • 1
    Email author
  • B. Liu
    • 2
    • 3
  • S. N. Senchenkova
    • 1
  • A. S. Shashkov
    • 1
  • L. Feng
    • 2
    • 3
  • L. Wang
    • 2
    • 3
  • Y. A. Knirel
    • 1
  1. 1.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.TEDA School of Biological Sciences and BiotechnologyNankai UniversityTianjinP. R. China
  3. 3.Tianjin Key Laboratory for Microbial Functional Genomics, TEDA CollegeNankai UniversityTianjinP. R. China

Personalised recommendations