Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 3, pp 316–328 | Cite as

Comparison of transition states obtained upon modeling of unfolding of immunoglobulin-binding domains of proteins L and G caused by external action with transition states obtained in the absence of force probed by experiments

  • A. V. Glyakina
  • N. K. Balabaev
  • O. V. GalzitskayaEmail author
Article

Abstract

We have studied the extent of coincidence of the pathway of unfolding of protein globules upon experimental modeling of protein unfolding caused by external actions and denaturants. To this end, we compared experimental Φ-values reported in the literature and Φ-values obtained by us upon modeling of unfolding of immunoglobulin-binding domains of proteins L and G caused by external actions at a constant rate. A comparison of the results of calculation with the experimental data shows that the folding pathways for protein L coincide, while those for protein G do not coincide despite structural similarity of these proteins.

Key words

protein structure molecular dynamics folding pathway mechanical unfolding atom—atomic contacts folding nucleus transition state 

Abbreviations

a.a.

amino acid residues

TS

transition state

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2009_3011_MOESM1_ESM.pdf (92 kb)
Supplementary material, approximately 92 KB.

References

  1. 1.
    Matouscheck, A., Kellis, J. T., Jr., Serrano, L., Bycroft, M., and Fersht, A. R. (1990) Nature, 346, 440–445.CrossRefGoogle Scholar
  2. 2.
    Krantz, B. A., and Sosnick, T. R. (2001) Nature Struct. Biol., 8, 1042–1047.PubMedCrossRefGoogle Scholar
  3. 3.
    Li, A., and Daggett, V. (1996) J. Mol. Biol., 257, 412–429.PubMedCrossRefGoogle Scholar
  4. 4.
    Daggett, V., Li, A., Itzhaki, L. S., Otzen, D. E., and Fersht, A. R. (1996) J. Mol. Biol., 257, 430–440.PubMedCrossRefGoogle Scholar
  5. 5.
    Caflisch, A., and Karplus, M. (1995) J. Mol. Biol., 252, 672–708.PubMedCrossRefGoogle Scholar
  6. 6.
    Brooks, C. L., Gruebele, M., Onuchic, J. N., and Wolynes, P. G. (1998) Proc. Natl. Acad. Sci. USA, 95, 11037–11038.PubMedCrossRefGoogle Scholar
  7. 7.
    Finkelstein, A. V. (1997) Protein Eng., 10, 843–845.PubMedCrossRefGoogle Scholar
  8. 8.
    Landsberg, P. (1971) Problems on Thermodynamics and Statistical Physics [Russian translation], Mir, Moscow.Google Scholar
  9. 9.
    Mayor, U., Guydosh, N. R., Johnson, C. M., Grossman, J. G., Sato, S., Jas, G. S., Freund, S. M. V., Alonso, D. O. V., Daggett, V., and Fersht, A. R. (2003) Nature, 421, 863–867.PubMedCrossRefGoogle Scholar
  10. 10.
    Galzitskaya, O. V., and Finkelstein, A. V. (1999) Proc. Natl. Acad. Sci. USA, 96, 11299–11304.PubMedCrossRefGoogle Scholar
  11. 11.
    Alm, E., and Baker, D. (1999) Proc. Natl. Acad. Sci. USA, 96, 11305–11310.PubMedCrossRefGoogle Scholar
  12. 12.
    Munoz, V., and Eaton, W. A. (1999) Proc. Natl. Acad. Sci. USA, 96, 11311–11316.PubMedCrossRefGoogle Scholar
  13. 13.
    Takada, S. (1999) Proc. Natl. Acad. Sci. USA, 96, 11698–11700.PubMedCrossRefGoogle Scholar
  14. 14.
    Baker, D. (2000) Nature, 405, 39–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Guerois, R., and Serrano, L. (2001) Curr. Opin. Struct. Biol., 11, 101–106.PubMedCrossRefGoogle Scholar
  16. 16.
    Gunasekaran, K., Eyles, S. J., Hagler, A. T., and Gierasch, L. M. (2001) Curr. Opin. Struct. Biol., 11, 83–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Perl, D., Welker, Ch., Schindler, T., Schroder, K., Marahiel, M. A., Jaenicke, R., and Schmid, F. X. (1998) Nature Struct. Biol., 5, 229–235.PubMedCrossRefGoogle Scholar
  18. 18.
    McCallister, E. L., Alm, E., and Baker, D. (2000) Nature Struct. Biol., 7, 669–673.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim, D. E., Fisher, C., and Baker, D. (2000) J. Mol. Biol., 298, 971–984.PubMedCrossRefGoogle Scholar
  20. 20.
    Blanco, F. J., Rivas, G., and Serrano, L. (1994) Nature Struct. Biol., 1, 584–590.PubMedCrossRefGoogle Scholar
  21. 21.
    Yi, Q., Scalley-Kim, M. L., Alm, E. J., and Baker, D. (2000) J. Mol. Biol., 299, 1341–1351.PubMedCrossRefGoogle Scholar
  22. 22.
    Kortemme, T., Kelly, M. J., Kay, L. E., Forman-Kay, J., and Serrano, L. (2000) J. Mol. Biol., 297, 1217–1229.PubMedCrossRefGoogle Scholar
  23. 23.
    Gillespie, J. R., and Shortle, D. (1997) J. Mol. Biol., 268, 170–184.PubMedCrossRefGoogle Scholar
  24. 24.
    Cordier-Ochsenbein, F., Guerois, R., Baleux, F., Huynh-Dinh, T., Lirsac, P. N., Russo-Marie, F., Neumann, J. M., and Sanson, A. (1998) J. Mol. Biol., 279, 1163–1175.PubMedCrossRefGoogle Scholar
  25. 25.
    Galzitskaya, O. V. (2002) Mol. Biol. (Moscow), 36, 386–390.Google Scholar
  26. 26.
    Best, R. B., Fowler, S. B., Herrera, J., Steward, A., Paci, E., and Clarke, J. (2003) J. Mol. Biol., 330, 867–877.PubMedCrossRefGoogle Scholar
  27. 27.
    Ng, S. P., Rounsevell, R. W. S., Steward, A., Geierhaas, Ch. D., Williams, Ph. M., Paci, E., and Clarke, J. (2005) J. Mol. Biol., 350, 776–789.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, J., Cieplak, A., and Kollman, P. A. (2000) J. Comp. Chem., 21, 1049–1074.CrossRefGoogle Scholar
  29. 29.
    Lemak, A. S., and Balabaev, N. K. (1995) Mol. Simul., 15, 223–231.CrossRefGoogle Scholar
  30. 30.
    Lemak, A. S., and Balabaev, N. K. (1996) J. Comp. Chem., 17, 1685–1695.CrossRefGoogle Scholar
  31. 31.
    Allen, M. P., and Tildesley, D. J. (1987) Computer Simulation of Liquids, Clarendon, Oxford.Google Scholar
  32. 32.
    Kabsch, W., and Sander, Ch. (1983) Biopolymers, 22, 2577–2637.PubMedCrossRefGoogle Scholar
  33. 33.
    Fersht, A. R. (1997) Curr. Opin. Struct. Biol., 7, 3–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Privalov, P. L. (1979) Adv. Protein Chem., 33, 167–241.PubMedCrossRefGoogle Scholar
  35. 35.
    Garbuzynskiy, S. O., Finkelstein, A. V., and Galzitskaya, O. V. (2004) J. Mol. Biol., 336, 509–525.PubMedCrossRefGoogle Scholar
  36. 36.
    Brockwell, D. J., Beddard, G. S., Paci, E., West, D. K., Olmsted, P. D., Smith, D. A., and Radford, S. E. (2005) Biophys. J., 89, 506–519.PubMedCrossRefGoogle Scholar
  37. 37.
    Carrion-Vazquez, M., Li, H., Lu, H., Marszalek, P. E., Oberhauser, A. F., and Fernandez, J. M. (2003) Nature Struct. Biol., 10, 738–743.PubMedCrossRefGoogle Scholar
  38. 38.
    Carrion-Vasquez, M., Oberhauser, A. F., Fowler, S. B., Marszalek, P. E., Broedel, S. E., Clarke, J., and Fernandez, J. M. (1999) Proc. Natl. Acad. Sci. USA, 96, 3694–3699.CrossRefGoogle Scholar
  39. 39.
    West, D. K., Olmsted, P. D., and Paci, E. (2006) J. Chem. Phys., 125, 204910–204917.PubMedCrossRefGoogle Scholar
  40. 40.
    West, D. K., Brockwell, D. J., Olmsted, P. D., Radford, Sh. E., and Paci, E. (2006) Biophys. J., 90, 287–297.PubMedCrossRefGoogle Scholar
  41. 41.
    West, D. K., Olmsted, P. D., and Paci, E. (2006) J. Chem. Phys., 124, 154909–154918.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Glyakina
    • 1
  • N. K. Balabaev
    • 1
  • O. V. Galzitskaya
    • 2
    Email author
  1. 1.Institute of Mathematical Problems of BiologyRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations