Biochemistry (Moscow)

, Volume 74, Issue 3, pp 281–287 | Cite as

A secreted caspase-3-substrate-cleaving activity at low pH belongs to cathepsin B: a study on primary brain cell cultures

  • M. V. Onufriev
  • A. A. Yakovlev
  • A. A. Lyzhin
  • M. Yu. Stepanichev
  • L. G. Khaspekov
  • N. V. GulyaevaEmail author


The cysteine proteases caspase-3 and cathepsins are involved in both neuronal plasticity and neuropathology. Using primary neuroglial and glial cerebellar cultures, the pH dependence of cleavage of a synthetic caspase-3 substrate, Ac-DEVD-AMC, was studied. At acidic pH, cathepsin B cleaved Ac-DEVD, this activity being significantly higher than that of caspase-3 at pH 7.4. This activity is blocked by peptide inhibitors of both caspase-3 and cathepsin B. Substitution of culture medium for balanced salt solution stimulated cathepsin B secretion in both types of cultures. Ischemia (oxygen-glucose deprivation) significantly decreased secretion of cathepsin B activities into the culture medium.

Key words

cathepsin B caspase-3 ischemia/reoxygenation neurons glia 







lactate hehydrogenase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turk, B., Turk, V., and Turk, D. (1997) Biol. Chem., 378, 141–150.PubMedGoogle Scholar
  2. 2.
    Kirschke, H., Langner, J., Riemann, S., Wiederanders, B., Ansorge, S., and Bohley, P. (1980) in Protein Degradation in Health and Disease, Ciba Foundation Symposium (Evered, D., and Whelan, J., eds.) Excerpta Medica, Amsterdam, pp. 5–35.Google Scholar
  3. 3.
    Yamashima, T. (2000) Prog. Neurobiol., 62, 273–295.PubMedCrossRefGoogle Scholar
  4. 4.
    Boya, P., Andreau, K., Poncet, D., Zamzani, N., Perfettini, J. L., Metivier, D., Ojcius, D. M., Jaattela, M., and Kroemer, G. (2003) J. Exp. Med., 197, 1323–1334.PubMedCrossRefGoogle Scholar
  5. 5.
    Benchoua, A., Braudeau, J., Reis, A., Couriaud, C., and Onteniente, B. (2004) J. Cerebr. Blood Flow Metab., 24, 1272–1279.Google Scholar
  6. 6.
    Kingham, P. J., and Pocock, J. M. (2001) J. Neurochem., 76, 1475–1484.PubMedCrossRefGoogle Scholar
  7. 7.
    Canu, N., Tufi, R., Serafino, A. L., Amadoro, G., Ciotti, M. T., and Calissano, P. (2005) J. Neurochem., 92, 1228–1242.PubMedCrossRefGoogle Scholar
  8. 8.
    Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. (1994) Cell, 78, 761–771.PubMedCrossRefGoogle Scholar
  9. 9.
    Knoblach, S. M., Alroy, D. A., Nikolaeva, M., Cernak, I., Stoica, B. A., and Faden, A. I. (2004) J. Cerebr. Blood Flow Metab., 24, 1119–1132.Google Scholar
  10. 10.
    Waterhouse, N. J., Finucane, D. M., Green, D. R., Elce, J. S., Kumar, S., Alnemri, E. S., Litwack, G., Khanna, K., Lavin, M. F., and Watters, D. J. (1998) Cell Death Differ., 5, 1051–1061.PubMedCrossRefGoogle Scholar
  11. 11.
    Gray, J., Haran, M. M., Schneider, K., Vesce, S., Ray, A. M., Owen, D., White, I. R., Cutler, P., and Davis, J. B. (2001) J. Biol. Chem., 276, 32750–32755.PubMedCrossRefGoogle Scholar
  12. 12.
    Yakovlev, A. A., Gorokhvatsky, A. Y., Onufriev, M. V., Beletsky, I. P., and Gulyaeva, N. V. (2008) Biochemistry (Moscow), 73, 332–336.Google Scholar
  13. 13.
    Buck, M. R., Karustis, D. G., Day, N. A., Honn, K. V., and Sloane, B. F. (1992) Biochem. J., 282, 273–278.PubMedGoogle Scholar
  14. 14.
    Kawada, A., Hara, K., Kominami, E., Hiruma, M., Akiyama, M., Ishibashi, A., Abe, H., Ichikawa, E., Nakamura, Y., Watanabe, S., Yamamoto, T., Umeda, T., and Nishioka, K. (1997) Br. J. Dermatol., 136, 361–366.CrossRefGoogle Scholar
  15. 15.
    Ryan, R. E., Sloane, B. F., Sameni, M., and Wood, P. L. (1995) J. Neurochem., 65, 1035–1045.PubMedGoogle Scholar
  16. 16.
    Graber, S., Maiti, S., and Halpain, S. (2004) Neuropharmacology, 47, 706–713.PubMedCrossRefGoogle Scholar
  17. 17.
    Hook, V. Y. (2006) Cell. Mol. Neurobiol., 26, 449–469.PubMedCrossRefGoogle Scholar
  18. 18.
    Andreeva, N., Khodorov, B., Stelmashook, E., Cragoe, E., and Victorov, I. (1991) Brain Res., 548, 322–325.PubMedCrossRefGoogle Scholar
  19. 19.
    Khaspekov, L. G., Onufriev, M. V., Lyzhin, A. A., Victorov, I. V., and Gulyaeva, N. V. (2002) Neurochemistry, 19, 37–40.Google Scholar
  20. 20.
    Yakovlev, A. A., Onufriev, M. V., Stepanichev, M. Y., Braun, K., and Gulyaeva, N. V. (2001) Neurochemistry, 18, 41–43.Google Scholar
  21. 21.
    Kosenko, E., Montoliu, C., and Giordano, G. (2004) J. Neurochem., 89, 1101–1110.PubMedCrossRefGoogle Scholar
  22. 22.
    Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.PubMedCrossRefGoogle Scholar
  23. 23.
    Nishimura, Y., Kawabata, T., and Kato, K. (1988) Arch. Biochem. Biophys., 261, 64–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Mort, J. S. (1998) in Handbook of Proteolytic Enzymes (Woessner, J., ed.) Academic Press, London, pp. 609–617.Google Scholar
  25. 25.
    Khouri, H. E., Plouffe, C., Hasnain, S., Hirama, N., Storer, A. C., and Menard, R. (1991) Biochem. J., 275, 751–757.PubMedGoogle Scholar
  26. 26.
    Hasnain, S., Hirama, T., Tam, A., and Mort, J. S. (1992) J. Biol. Chem., 267, 4713–4721.PubMedGoogle Scholar
  27. 27.
    Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T. T., Yu, V. L., and Miller, D. K. (1995) Nature, 376, 37–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G., and Earnshaw, W. C. (1994) Nature, 371, 346–347.PubMedCrossRefGoogle Scholar
  29. 29.
    Germain, M., Affar, E. B., D’Amours, D., Dixit, V. M., Salvesen, G. S., and Poirier, G. G. (1999) J. Biol. Chem., 274, 28379–28384.PubMedCrossRefGoogle Scholar
  30. 30.
    Shah, G. M., Shah, R. G., and Poirier, G. G. (1996) Biochem. Biophys. Res. Commun., 229, 838–844.PubMedCrossRefGoogle Scholar
  31. 31.
    Casiano, C. A., Ochs, R. L., and Tan, E. M. (1998) Cell Death Differ., 5, 183–190.PubMedCrossRefGoogle Scholar
  32. 32.
    Gobeil, S., Boucher, C. C., Nadeau, D., and Poirier, G. G. (2001) Cell Death Differ., 8, 588–594.PubMedCrossRefGoogle Scholar
  33. 33.
    Ryan, R. E., Sloane, B. F., Sameni, M., and Wood, P. L. (1995) J. Neurochem., 65, 1035–1045.PubMedCrossRefGoogle Scholar
  34. 34.
    Chesler, M. (1990) Prog. Neurobiol., 34, 401–427.PubMedCrossRefGoogle Scholar
  35. 35.
    Back, T., Hoehn, M., Mies, G., Busch, E., Schmitz, B., Kohno, K., and Hossmann, K. A. (2000) Ann. Neurol., 47, 485–492.PubMedCrossRefGoogle Scholar
  36. 36.
    Siesjo, B. K., Katsura, K., and Kristian, T. (1996) Adv. Neurol., 71, 209–233.PubMedGoogle Scholar
  37. 37.
    Tombaugh, G. C., and Sapolsky, R. M. (1993) J. Neurochem., 61, 793–803.PubMedCrossRefGoogle Scholar
  38. 38.
    Kraig, R. P., Pulsinelli, W. A., and Plum, F. (1985) Brain Res., 342, 281–290.PubMedCrossRefGoogle Scholar
  39. 39.
    Nedergaard, M., Kraig, R. P., Tanabe, J., and Pulsinelli, W. A. (1991) Am. J. Physiol., 260, R581–R588.PubMedGoogle Scholar
  40. 40.
    Chapman, H. A., Riese, R. J., and Shi, G.-P. (1997) Annu. Rev. Physiol., 59, 63–88.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. V. Onufriev
    • 1
  • A. A. Yakovlev
    • 1
    • 2
  • A. A. Lyzhin
    • 3
  • M. Yu. Stepanichev
    • 1
  • L. G. Khaspekov
    • 3
  • N. V. Gulyaeva
    • 1
    Email author
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  3. 3.Neurology Research CenterRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations