Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 2, pp 231–234 | Cite as

Protein aggregation and neurodegeneration: Clues from a yeast model of Huntington’s disease

  • N. Bocharova
  • R. Chave-Cox
  • S. Sokolov
  • D. Knorre
  • F. SeverinEmail author
Hypothesis

Abstract

A number of neurodegenerative diseases are accompanied by the appearance of intracellular protein aggregates. Huntington’s disease (HD) is caused by a mutation in a gene encoding huntingtin. The mutation causes the expansion of the polyglutamine (polyQ) domain and consequently polyQ-containing aggregates accumulate and neurons in the striatum die. The role of the aggregates is still not clear: they may be the cause of cytotoxicity or a manifestation of the cellular attempt to remove the misfolded proteins. There is accumulating evidence that the main cause of HD is the interaction of the mutated huntingtin with other polyQ-containing proteins and molecular chaperones and most studies based on a yeast model of HD support this point of view. Data obtained using yeasts suggest pathological consequences of polyQ-proteasomal interaction: proteasomal overload by polyQs may interfere with functions of the cell cycle-regulating proteins.

Key words

Huntington’s disease aggregation polyglutamine yeast 

Abbreviations

APC

anaphase-promoting complex

HD

Huntington’s disease

polyQ

polyglutamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor, J. P., Hardy, J., and Fischbeck, K. N. (2002) Science, 296, 1991–1995.PubMedCrossRefGoogle Scholar
  2. 2.
    The Huntington’s Disease Collaborative Research Group (1993) Cell, 72, 971–983.CrossRefGoogle Scholar
  3. 3.
    Faber, P. W., Barnes, G. T., Srinidhi, J., Chen, J., Gusella, J. F., and MacDonald, M. E. (1998) Hum Mol Genet., 7, 1463–1474.PubMedCrossRefGoogle Scholar
  4. 4.
    Andrade, M. A., and Bork, P. (1995) Nat Genet., 11, 115–116.PubMedCrossRefGoogle Scholar
  5. 5.
    Wellington, C. L., Ellerby, L. M., Hackam, A. S., Margolis, R. L., Trifiro, M. A., Singaraja, R., McCutcheon, K., Salvesen, G. S., Propp, S. S., Bromm, M., Rowland, K. J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C. A., Nicholson, D. W., Bredesen, D. E., and Hayden, M. R. (1998) J. Biol. Chem., 273, 9158–9167.PubMedCrossRefGoogle Scholar
  6. 6.
    Gutekunst, C. A., Levey, A. I., Heilman, C. J., Whaley, W. L., Yi, H., Nash, N. R., Rees, H. D., Madden, J. J., and Hersch, S. M. (1995) Proc. Natl. Acad. Sci. USA, 92, 8710–8714.PubMedCrossRefGoogle Scholar
  7. 7.
    DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Science, 277, 1990–1993.PubMedCrossRefGoogle Scholar
  8. 8.
    Trottier, Y., Devys, D., Imbert, G., Saudou, F., An, I., Lutz, Y., Weber, C., Agid, Y., Hirsch, E. C., and Mandel, J. L. (1995) Nat. Genet., 10, 104–110.PubMedCrossRefGoogle Scholar
  9. 9.
    Velier, J., Kim, M., Schwarz, C., Kim, T. W., Sapp, E., Chase, K., Aronin, N., and DiFiglia, M. (1998) Exp. Neurol., 152, 34–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Harjes, P., and Wanker, E. E. (2003) Trends Biochem. Sci., 28, 425–433.PubMedCrossRefGoogle Scholar
  11. 11.
    Li, S. H., and Li, X. J. (2004) Trends Genet., 20, 146–154.PubMedCrossRefGoogle Scholar
  12. 12.
    Gauthier, L. R., Charrin, B. C., Borrell-Pages, M., Dompierre, J. P., Rangone, H., Cordelieres, F. P., de Mey, J., MacDonald, M. E., Lessmann, V., Humbert, S., and Saudou, F. (2004) Cell, 118, 127–138.PubMedCrossRefGoogle Scholar
  13. 13.
    Rigamonti, D., Bauer, J. H., de Fraja, C., Conti, L., Sipione, S., Sciorati, C., Clementi, E., Hackam, A., Hayden, M. R., Li, Y., Cooper, J. K., Ross, C. A., Govoni, S., Vincenz, C., and Cattaneo, E. (2000) J. Neurosci., 20, 3705–3713.PubMedGoogle Scholar
  14. 14.
    Hackam, A. S., Yassa, A. S., Singaraja, R., Metzler, M., Gutekunst, C. A., Gan, L., Warby, S., Wellington, C. L., Vaillancourt, J., Chen, N., Gervais, F. G., Raymond, L., Nicholson, D. W., and Hayden, M. R. (2000) J. Biol. Chem., 275, 41299–41308.PubMedCrossRefGoogle Scholar
  15. 15.
    Snell, R. G., MacMillan, J. C., Cheadle, J. P., Fenton, I., Lazarou, L. P., Davies, P., MacDonald, M. E., Gusella, J. F., Harper, P. S., and Shaw, D. J. (1993) Nat. Genet., 4, 393–397.PubMedCrossRefGoogle Scholar
  16. 16.
    Rubinsztein, D. C., Leggo, J., Coles, R., Almqvist, E., Biancalana, V., Cassiman, J. J., Chotai, K., Connarty, M., Crauford, D., Curtis, A., Curtis, D., Davidson, M. J., Differ, A. M., Dode, C., Dodge, A., Frontali, M., Ranen, N. G., Stine, O. C., Sherr, M., Abbott, M. H., Franz, M. L., Graham, C. A., Harper, P. S., Hedreen, J. C., Hayden, M. R., et al. (1996) Am. J. Hum. Genet., 59, 16–22.PubMedGoogle Scholar
  17. 17.
    Outeiro, T. F., and Giorgini, F. (2006) Biotechnol. J., 1, 258–269.PubMedCrossRefGoogle Scholar
  18. 18.
    Vishnevskaia, A. B., Kushnirov, V. V., and Ter-Avanesian, M. D. (2007) Mol. Biol. (Moscow), 41, 346–354.Google Scholar
  19. 19.
    Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O., and Sherman, M. Y. (2002) J. Cell Biol., 157, 997–1004.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang, X., Smith, D. L., Meriin, A. B., Engemann, S., Russel, D. E., Roark, M., Washington, S. L., Maxwell, M. M., Marsh, J. L., Thompson, L. M., Wanker, E. E., Young, A. B., Housman, D. E., Bates, G. P., Sherman, M. Y., and Kazantsev, A. G. (2005) Proc. Natl. Acad. Sci. USA, 102, 892–897.PubMedCrossRefGoogle Scholar
  21. 21.
    Bodner, R. A., Outeiro, T. F., Altmann, S., Maxwell, M. M., Cho, S. H., Hyman, B. T., McLean, P. J., Young, A. B., Housman, D. E., and Kazantsev, A. G. (2006) Proc. Natl. Acad. Sci. USA, 103, 4246–4251.PubMedCrossRefGoogle Scholar
  22. 22.
    Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R., and Finkbeiner, S. (2004) Nature, 431, 805–810.PubMedCrossRefGoogle Scholar
  23. 23.
    Ross, C. A., and Poirier, M. A. (2004) Nat. Med., 10, S10–S17.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Roon-Mom, W. M., Reid, S. J., Jones, A. L., MacDonald, M. E., Faull, R. L., and Snell, R. G. (2002) Brain Res. Mol. Brain Res., 109, 1–10.PubMedGoogle Scholar
  25. 25.
    Stevanin, G., Fujigasaki, H., Lebre, A. S., Camuzat, A., Jeannequin, C., Dode, C., Takahashi, J., San, C., Bellance, R., Brice, A., and Durr, A. (2003) Brain, 126, 1599–1603.PubMedCrossRefGoogle Scholar
  26. 26.
    Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov, N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M., and Hartl, F. U. (2004) Mol. Cell., 15, 95–105.PubMedCrossRefGoogle Scholar
  27. 27.
    Sokolov, S., Pozniakovsky, A., Bocharova, N., Knorre, D., and Severin, F. (2006) Biochim. Biophys. Acta, 1757, 660–666.PubMedCrossRefGoogle Scholar
  28. 28.
    Trushina, E., Singh, R. D., Dyer, R. B., Cao, S., Shah, V. H., Parton, R. G., Pagano, R. E., and McMurray, C. T. (2006) Hum. Mol. Genet., 15, 3578–3591.PubMedCrossRefGoogle Scholar
  29. 29.
    Hyun, T. S., Li, L., Oravecz-Wilson, K. I., Bradley, S. V., Provot, M. M., Munaco, A. J., Mizukami, I. F., Sun, H., and Ross, T. S. (2004) Mol. Cell Biol., 24, 4329–4340.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu, C. W., Giasson, B. I., Lewis, K. A., Lee, V. M., Demartino, G. N., and Thomas, P. J. (2005) J. Biol. Chem., 280, 22670–22678.PubMedCrossRefGoogle Scholar
  31. 31.
    Bossy-Wetzel, E., Schwarzenbacher, R., and Lipton, S. A. (2004) Nat. Med., 10, S2–S9.PubMedCrossRefGoogle Scholar
  32. 32.
    Jana, N. R., Zemskov, E. A., Wang, Gh., and Nukina, N. (2001) Hum. Mol. Genet., 10, 1049–1059.PubMedCrossRefGoogle Scholar
  33. 33.
    Castro, A., Bernis, C., Vigneron, S., Labbe, J. C., and Lorca, T. (2005) Oncogene, 24, 314–325.PubMedCrossRefGoogle Scholar
  34. 34.
    Baker, D. J., Dawlaty, M. M., Galardy, P., and van Deursen, J. M. (2007) Cell Mol. Life Sci., 64, 589–600.PubMedCrossRefGoogle Scholar
  35. 35.
    Juang, Y. L., Huang, J., Peters, J. M., McLaughlin, M. E., Tai, C. Y., and Pellman, D. (1997) Science, 275, 1311–1314.PubMedCrossRefGoogle Scholar
  36. 36.
    Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D., and Kushnirov, V. V. (2003) J. Biol. Chem., 278, 49636–49643.PubMedCrossRefGoogle Scholar
  37. 37.
    Taxis, C., Hitt, R., Park, S. H., Deak, P. M., Kostova, Z., and Wolf, D. H. (2003) J. Biol. Chem., 278, 35903–35913.PubMedCrossRefGoogle Scholar
  38. 38.
    Aulia, S., and Tang, B. L. (2006) Biochem. Biophys. Res. Commun., 339, 1–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Lasorella, A., Stegmuller, J., Guardavaccaro, D., Liu, G., Carro, M. S., Rothschild, G., de la Torre-Ubieta, L., Pagano, M., Bonni, A., and Iavarone, A. (2006) Nature, 442, 471–474.PubMedCrossRefGoogle Scholar
  40. 40.
    Stegmuller, J., Konishi, Y., Huynh, M. A., Yuan, Z., Dibacco, S., and Bonni, A. (2006) Neuron, 50, 389–400.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. Bocharova
    • 1
  • R. Chave-Cox
    • 2
  • S. Sokolov
    • 1
  • D. Knorre
    • 3
  • F. Severin
    • 3
    Email author
  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.University College LondonLondonUK
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations