Biochemistry (Moscow)

, Volume 74, Issue 2, pp 221–225 | Cite as

Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF-2)

  • M. E. GasparianEmail author
  • P. A. Elistratov
  • N. I. Drize
  • I. N. Nifontova
  • D. A. Dolgikh
  • M. P. Kirpichnikov


Basic fibroblast growth factor (FGF-2) is a member of a large family of structurally related proteins that affect the growth, differentiation, migration, and survival of many cell types. The human FGF-2 gene (encoding residues 1–155) was synthesized by PCR from 20 oligonucleotides and cloned into plasmid pET-32a. A high expression level (1 g/liter) of a fused protein thioredoxin/FGF-2 was achieved in Escherichia coli strain BL21(DE3). The fusion protein was purified from the soluble fraction of cytoplasmic proteins on a Ni-NTA agarose column. After cleavage of the thioredoxin/FGF-2 fusion with recombinant human enteropeptidase light chain, the target protein FGF-2 was purified on a heparin-Sepharose column. The yield of FGF-2 without N- and C-terminal tags and with high activity was 100 mg per liter of cell culture. Mutations C78S and C96S in the amino acid sequence of the protein decreased FGF-2 dimer formation without affecting its solubility and biological activity.

Key words

growth factors FGF-2 recombinant proteins E. coli 



embryonic calf serum


basic fibroblast growth factor


receptor of fibroblast growth factor




3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide


Terrific Broth (enriched medium)




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nobuyuki, I., and Ornitz, D. M. (2004) TRENDS Genet., 20, 563–569.CrossRefGoogle Scholar
  2. 2.
    Bikfalvi, A., Klein, S., Pintucci, G., and Rifkin, D. B. (1997) Endocr. Rev., 18, 26–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Presta, M., Era, P., Mitola, S., Moroni, E., Ronca, R., and Rusnati, M. (2005) Cytokine Growth Factor Rev., 16, 159–178.PubMedCrossRefGoogle Scholar
  4. 4.
    Spence, J. R., Aycinena, J., and Rio-Tsonis, K. (2007) Devel. Dynam., 236, 1161–1174.CrossRefGoogle Scholar
  5. 5.
    Cancedda, R., Bianchi, G., Derubeis, A., and Quarto, R. (2003) Stem Cells, 21, 610–619.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhu, X., Komiya, H., Chirino, A., Faham, S., Fox, G. M., Arakawa, T., Hsu, B. T., and Rees, D. C. (1991) Science, 251, 90–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Ericksson, A. E., Cousens, L. S., Weaver, L. H., and Matthews, B. W. (1991) Proc. Natl. Acad. Sci. USA, 88, 3441–3445.CrossRefGoogle Scholar
  8. 8.
    Nuggent, M. A., and Iozzo, R. V. (2000) Int. J. Biochem. Cell Biol., 32, 115–120.CrossRefGoogle Scholar
  9. 9.
    Dailey, L., Ambrosetti, D., Mansukhani, A., and Basilico, C. (2005) Cytokine Growth Factor Rev., 16, 233–247.PubMedCrossRefGoogle Scholar
  10. 10.
    Abraham, A. A., Whang, J. L., Tumolo, A., Mergia, A., Friedman, J., Gospodarowicz, D., and Fiddes, J. C. (1986) EMBO J., 5, 2523–2528.PubMedGoogle Scholar
  11. 11.
    Gospodarowicz, D., Neufeld, G., and Schweigerer, L. (1986) Cell Diff., 19, 1–17.CrossRefGoogle Scholar
  12. 12.
    Iwane, M., Kurokawa, T., Sasada, R., Seno, M., Nakagawa, S., and Igarashi, K. (1987) Biochem. Biophys. Res. Commun., 146, 470–477.PubMedCrossRefGoogle Scholar
  13. 13.
    Kroiher, M., Raffioni, S., and Steele, R. E. (1995) Biochim. Biophys. Acta, 1250, 29–34.PubMedGoogle Scholar
  14. 14.
    Garke, G., Deckwer, W. D., and Anspach, F. (2000) J. Chromatogr. B Biomed. Sci. Appl., 737, 25–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang, J., Honga, A., Renb, J., Suna, F., Shi, Y., Liu K., Xie, Q., Dai, Y., Li, Z., and Chenc, Y. (2006) J. Biotechnol., 121, 442–447.PubMedCrossRefGoogle Scholar
  16. 16.
    Sheng, Z., Chang, S., and Chirico, W. J. (2003) Protein Exp. Purif., 27, 267–271.CrossRefGoogle Scholar
  17. 17.
    Gasparian, M. E., Ostapchenko, V. G., Schulga, A. A., Dolgikh, D. A., and Kirpichnikov, M. P. (2003) Protein Expr. Purif., 31, 133–139.PubMedCrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.PubMedCrossRefGoogle Scholar
  19. 19.
    Laemmli, U. K. (1970) Nature, 277, 680–685.CrossRefGoogle Scholar
  20. 20.
    Cory, A. H., Owen, T. C., Baltrop, J. A., and Cory, J. G. (1991) Cancer Commun., 3, 207–212.PubMedGoogle Scholar
  21. 21.
    Zhang, J., Cousens, L., Barr, P., and Sprang, S. (1991) Proc. Natl. Acad. Sci. USA, 88, 3446–3450.PubMedCrossRefGoogle Scholar
  22. 22.
    Squires, C. H., Childs, J., Eisenberg, S., Peter, J., Polverini, S., and Sommer, A. (1988) J. Biol. Chem., 263, 16297–16302.PubMedGoogle Scholar
  23. 23.
    Fox, G. M., Schiffer, S. G., Rohde, M. F., Tsai, L. B., Banks, A. R., and Arakawa, T. (1988) J. Biol. Chem., 263, 18452–18458.PubMedGoogle Scholar
  24. 24.
    Seno, M., Sasada, R., Ivane, M., Katsuichi, S., Kurokawa, T., Ito, K., and Igarashi, K. (1988) Biochem. Biophys. Res. Commun., 151, 701–708.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. E. Gasparian
    • 1
    Email author
  • P. A. Elistratov
    • 1
  • N. I. Drize
    • 2
  • I. N. Nifontova
    • 2
  • D. A. Dolgikh
    • 1
  • M. P. Kirpichnikov
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Hematological Scientific CenterRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations