Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 2, pp 175–185 | Cite as

Interaction of human phenylalanyl-tRNA synthetase with specific tRNA according to thiophosphate footprinting

  • I. A. Vasil’eva
  • E. A. Semenova
  • N. A. MoorEmail author
Article

Abstract

The interaction of human cytoplasmic phenylalanyl-tRNA synthetase (an enzyme with yet unknown 3D-structure) with homologous tRNAPhe under functional conditions was studied by footprinting based on iodine cleavage of thiophosphate-substituted tRNA transcripts. Most tRNAPhe nucleotides recognized by the enzyme in the anticodon (G34), anticodon stem (G30–C40, A31–U39), and D-loop (G20) have effectively or moderately protected phosphates. Other important specificity elements (A35 and A36) were found to form weak nonspecific contacts. The D-stem, T-arm, and acceptor stem are also among continuous contacts of the tRNAPhe backbone with the enzyme, thus suggesting the presence of additional recognition elements in these regions. The data indicate that mechanisms of interaction between phenylalanyl-tRNA synthetases and specific tRNAs are different in prokaryotes and eukaryotes.

Key words

nucleoside-5′-O-(1-thiotriphosphate) tRNAPhe human phenylalanyl-tRNA synthetase footprinting 

Abbreviations

aaRS

aminoacyl-tRNA synthetase

Phe-AMP

L-phenylalanyl-5′-adenylate

PheOH-AMP

L-phenylalaninyl-5′-adenylate

PheRS

phenylalanyl-tRNA synthetase (analogous abbreviations are used for other aminoacyl-tRNA synthetases with given specificity according to the commonly accepted amino acid notation)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Safro, M., Moor, N., and Lavrik, O. (2005) in The Aminoacyl-tRNA Synthetases (Ibba, M., Francklyn, C., and Cusack, S., eds.) Landes Bioscience, Georgetown, TX, pp. 250–265.Google Scholar
  2. 2.
    Vasil’eva, I. A., and Moor, N. A. (2007) Biochemistry (Moscow), 72, 247–263.CrossRefGoogle Scholar
  3. 3.
    Raczniak, G., Ibba, M., and Söll, D. (2001) Toxicology, 160, 181–189.PubMedCrossRefGoogle Scholar
  4. 4.
    Kron, M., and Härtlein, M. (2005) in The Aminoacyl-tRNA Synthetases (Ibba, M., Francklyn, C., and Cusack, S., eds.) Landes Bioscience, Georgetown, TX, pp. 397–404.Google Scholar
  5. 5.
    Yang, X.-L., Skene, R. J., Mcree, D. E., and Schimmel, P. (2002) Proc. Natl. Acad. Sci. USA, 99, 15369–15374.PubMedCrossRefGoogle Scholar
  6. 6.
    Yang, X.-L., Otero, F. J., Skene, R. J., Mcree, D. E., Schimmel, P., and de Pouplana, L. R. (2003) Proc. Natl. Acad. Sci. USA, 100, 15376–15380.PubMedCrossRefGoogle Scholar
  7. 7.
    Guo, M., Ignatov, M., Musier-Forsyth, K., Schimmel, P., and Yang, X. L. (2008) Proc. Natl. Acad. Sci. USA, 105, 2331–2336.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonnefond, L., Frugier, M., Touzé, E., Lorber, B., Florentz, C., Giegé, R., Sauter, C., and Rudinger-Thirion, J. (2007) Structure, 15, 1505–1516.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang, X.-L., Otero, F. J., Ewalt, K. L., Liu, J., Swairjo, M. A., Kohrer, C., RajBhandary, U. L., Skene, R. J., Mcree, D. E., and Schimmel, P. (2006) EMBO J., 25, 2919–2929.PubMedCrossRefGoogle Scholar
  10. 10.
    Shen, N., Zhou, M., Yang, B., Yu, Y., Dong, X., and Ding, J. (2008) Nucleic Acids Res., 36, 1288–1299.PubMedCrossRefGoogle Scholar
  11. 11.
    Schatz, D., Leberman, R., and Eckstein, F. (1991) Proc. Natl. Acad. Sci. USA, 88, 61302–61306.CrossRefGoogle Scholar
  12. 12.
    Giegé, R., and Frugier, M. (2003) in Translation Mechanisms (Lapointe, J., and Brakier-Gingras, L., eds.) Landes Bioscience, Georgetown, TX, pp. 1–24.Google Scholar
  13. 13.
    Dambowski, M., Junemann, R., Schafer, M. A., Spahn, C. M. T., Nierhaus, K. H., Alexeeva, E. V., Dontsova, O. A., Shpanchenko, O. V., and Bogdanov, A. A. (1996) Biochemistry (Moscow), 61, 1402–1412.Google Scholar
  14. 14.
    Ming, X., Smith, K., Suga, H., and Hou, Y.-M. (2002) J. Mol. Biol., 318, 1207–1220.PubMedCrossRefGoogle Scholar
  15. 15.
    Herring, S., Ambrogelly, A., Polycarpo, C. R., and Söll, D. (2007) Nucleic Acids Res., 35, 1270–1278.PubMedCrossRefGoogle Scholar
  16. 16.
    Vlassov, V. V., Kern, D., Romby, P., Giegé, R., and Ebel, J.- P. (1983) Eur. J. Biochem., 132, 537–544.PubMedCrossRefGoogle Scholar
  17. 17.
    Kreutzer, R., Kern, D., Giegé, R., and Rudinger, J. (1995) Nucleic Acids Res., 23, 4598–4602.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldgur, Y., Mosyak, L., Reshetnikova, L., Ankilova, V., Khodyreva, S., Lavrik, O., and Safro, M. (1997) Structure, 5, 59–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Lavrik, O., Moor, N., and Nevinskii, G. (1978) Bioorg. Khim., 4, 1470–1487.Google Scholar
  20. 20.
    Moor, N., Linshiz, G., and Safro, M. (2002) Protein Expr. Purif., 24, 260–267.PubMedCrossRefGoogle Scholar
  21. 21.
    Vasil’eva, I. A., Ankilova, V. N., Lavrik, O. I., and Moor, N. A. (2002) J. Mol. Recognit., 15, 188–196.PubMedCrossRefGoogle Scholar
  22. 22.
    Ruffner, D. E., and Uhlenbeck, O. C. (1990) Nucleic Acids Res., 18, 6025–6029.PubMedCrossRefGoogle Scholar
  23. 23.
    Silberklang, M., Gillum, A. M., and RajBhandary, U. L. (1979) Meth. Enzymol., 59, 58–109.PubMedCrossRefGoogle Scholar
  24. 24.
    England, T. E., and Bruce, A. G. (1980) Meth. Enzymol., 65, 65–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Moor, N. A., Ankilova, V. N., Lavrik, O. I., and Favre, A. (2001) Biochim. Biophys. Acta, 1518, 226–236.PubMedGoogle Scholar
  26. 26.
    Dock-Bregeon, A. C., Garcia, A., Giegé, R., and Moras, D. (1990) Eur. J. Biochem., 188, 283–290.PubMedCrossRefGoogle Scholar
  27. 27.
    Horowitz, J., Chu, W. C., Derrick, W. B., Liu, J. C., Liu, M., and Yue, D. (1999) Biochemistry, 38, 7737–7746.PubMedCrossRefGoogle Scholar
  28. 28.
    Beresten, S., Jahn, M., and Söll, D. (1992) Nucleic Acids Res., 20, 1523–1530.PubMedCrossRefGoogle Scholar
  29. 29.
    Krauss, G., Riesner, D., and Maass, G. (1976) Eur. J. Biochem., 68, 81–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Bonnet, J., and Ebel, J. P. (1975) Eur. J. Biochem., 58, 193–201.PubMedCrossRefGoogle Scholar
  31. 31.
    Maglott, E. J., Sanmitra, S. D., Przykorska, A., and Glick, G. D. (1998) Biochemistry, 37, 16349–16359.PubMedCrossRefGoogle Scholar
  32. 32.
    Moor, N., Lavrik, O., Favre, A., and Safro, M. (2003) Biochemistry, 42, 10697–10708.PubMedCrossRefGoogle Scholar
  33. 33.
    Nazarenko, I. A., Tinkle-Peterson, E., Zakharova, O. D., Lavrik, O. I., and Uhlenbeck, O. C. (1992) Nucleic Acids Res., 20, 475–478.PubMedCrossRefGoogle Scholar
  34. 34.
    Moor, N., Kotik-Kogan, O., Tworowski, D., Sukhanova, M., and Safro, M. (2006) Biochemistry, 45, 10572–10583.PubMedCrossRefGoogle Scholar
  35. 35.
    Sasaki, H. M., Sekine, S., Sengoku, T., Fukunaga, R., Hattori, M., Utsunomiya, Y., Kuroishi, C., Kuramitsu, S., Shirouzu, M., and Yokoyama, S. (2006) Proc. Natl. Acad. Sci. USA, 103, 14744–14749.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. A. Vasil’eva
    • 1
  • E. A. Semenova
    • 2
  • N. A. Moor
    • 1
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations