Advertisement

Biochemistry (Moscow)

, 74:165 | Cite as

Proteome of the bacterium Mycoplasma gallisepticum

  • I. A. DeminaEmail author
  • M. V. Serebryakova
  • V. G. Ladygina
  • M. A. Rogova
  • V. G. Zgoda
  • D. A. Korzhenevskyi
  • V. M. Govorun
Article

Abstract

Using modern proteomic assays, we have identified the products of gene expression and posttranslational modifications of proteins of the bacterium Mycoplasma gallisepticum S6. Combinations of different technologies of protein separation by electrophoresis and mass-spectrometric analysis gave us a total of 446 proteins, i.e. 61% of the annotated proteins of this microorganism. The Pro-Q Diamond and Pro-Q Emerald dye technology was used for fluorescent detection of ten phosphoproteins and two glycoproteins. The acylation of proteins was studied by electrophoresis after in vivo labeling with different 14C-labeled fatty acids, followed by autoradiography. Sixteen acylated proteins were identified, with a quarter of them involved in plasma membrane construction and another quarter involved in cell energy metabolism.

Key words

Mycoplasma gallisepticum proteomics 2-D electrophoresis mass spectrometry posttranslational modifications 

Abbreviations

COG

clusters of orthologous groups

References

  1. 1.
    Pitcher, D. G., and Nicholas, R. A. J. (2005) Vet. J., 170, 300–306.PubMedCrossRefGoogle Scholar
  2. 2.
    Korolev, E. V., Nikonov, A. V., Brudnaya, M. S., Snigirevskaya, E. S., Sabinin, G. V., Komissarchik, Y. Yu., Ivanov, P. I., and Borchsenius, S. N. (1994) Microbiology, 262, 671–681.CrossRefGoogle Scholar
  3. 3.
    Papazisi, L., Gorton, T. S., Kutish, G., Markham, P. F., Browning, G. F., Nguyen, D. K., Swartzell, S., Madan, A., Mahairas, G., and Geary, S. J. (2003) Microbiology, 149, 2307–2316.PubMedCrossRefGoogle Scholar
  4. 4.
    Pollack, J. D., Tryon, V. V., and Beaman, K. D. (1983) Yale J. Biol. Med., 56, 709–716.PubMedGoogle Scholar
  5. 5.
    Morowitz, H. J., and Maniloff, J. (1966) J. Bacteriol., 91, 1638–1644.PubMedGoogle Scholar
  6. 6.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Anal. Chem., 68, 850–858.PubMedCrossRefGoogle Scholar
  7. 7.
    Jensen, O. N., Wilm, M., Shevchenko, A., and Mann, M. (1999) Meth. Mol. Biol., 112, 513–530.Google Scholar
  8. 8.
    Zgoda, V., Tikhonova, O., Viglinskaya, A., Serebriakova, M., Lisitsa, A., and Archakov, A. (2006) Proteomics, 6, 4662–4670.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoch, J. A. (2000) Curr. Opin. Microbiol., 3, 165–170.PubMedCrossRefGoogle Scholar
  10. 10.
    Garnak, M., and Reeves, H. C. (1979) Science, 203, 1111–1112.PubMedCrossRefGoogle Scholar
  11. 11.
    Jan, G., Fontenelle, C., le Henaff, M., and Wroblewski, H. (1995) Res. Microbiol., 146, 739–750.PubMedCrossRefGoogle Scholar
  12. 12.
    Su, H. C., Hutchison, C. A., 3rd, and Giddings, M. C. (2007) BMC Microbiol., 7, 63.PubMedCrossRefGoogle Scholar
  13. 13.
    Macek, B., Gnad, F., Soufi, B., Kumar, C., Olsen, J. V., Mijakovic, I., and Mann, M. (2008) Mol. Cell. Proteomics, 7, 299–307.PubMedGoogle Scholar
  14. 14.
    Macek, B., Mijakovic, I., Olsen, J. V., Gnad, F., Kumar, C., Jensen, P. R., and Mann, M. (2007) Mol. Cell. Proteomics, 6, 697–707.PubMedCrossRefGoogle Scholar
  15. 15.
    Lippmann, C., Lindschau, C., Vijgenboom, E., Schroder, W., Bosch, L., and Erdmann, V. A. (1993) J. Biol. Chem., 268, 601–607.PubMedGoogle Scholar
  16. 16.
    Ferrer-Navarro, M., Gomez, A., Yanes, O., Planell, R., Aviles, F. X., Pinol, J., Perez Pons, J. A., and Querol, E. (2006) J. Proteome Res., 5, 688–694.PubMedCrossRefGoogle Scholar
  17. 17.
    Kahane, I., and Brunner, H. (1977) Infect. Immun., 18, 273–277.PubMedGoogle Scholar
  18. 18.
    Goel, M. C., and Lemcke, R. M. (1975) Ann. Microbiol. (Paris), 126, 299–312.Google Scholar
  19. 19.
    Thomas, C. B., and Sharp, P. (1990) Avian Dis., 34, 969–978.PubMedCrossRefGoogle Scholar
  20. 20.
    Van der Ven, B. C., Harder, J. D., Crick, D. C., and Belisle, J. T. (2005) Science, 309, 941–943.Google Scholar
  21. 21.
    Helenius, A., and Aebi, M. (2004) Annu. Rev. Biochem., 73, 1019–1049.PubMedCrossRefGoogle Scholar
  22. 22.
    Young, N. M., Brisson, J. R., Kelly, J., Watson, D. C., Tessier, L., Lanthier, P. H., Jarrell, H. C., Cadotte, N., St. Michael, F., Aberg, E., and Szymanski, C. M. (2002) J. Biol. Chem., 277, 42530–42539.PubMedCrossRefGoogle Scholar
  23. 23.
    Forsyth, M. H., Tourtellotte, M. E., and Geary, S. J. (1992) Mol. Microbiol., 6, 2099–2106.PubMedCrossRefGoogle Scholar
  24. 24.
    Worliczek, H. L., Kampfer, P., Rosengarten, R., Tindall, B. J., and Busse, H. J. (2007) Syst. Appl. Microbiol., 30, 355–370.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. A. Demina
    • 1
    Email author
  • M. V. Serebryakova
    • 1
  • V. G. Ladygina
    • 1
  • M. A. Rogova
    • 1
  • V. G. Zgoda
    • 2
  • D. A. Korzhenevskyi
    • 1
  • V. M. Govorun
    • 1
  1. 1.Research Institute for Physical-Chemical MedicineMinistry of Public Health of the Russian FederationMoscowRussia
  2. 2.Orekhovich Research Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations