Biochemistry (Moscow)

, Volume 74, Issue 2, pp 137–144 | Cite as

Molecular cloning and expression in Escherichia coli of an active fused Zea mays L. D-amino acid oxidase

  • A. GholizadehEmail author
  • B. B. Kohnehrouz


D-Amino acid oxidase (DAAO) is an FAD-dependent enzyme that metabolizes D-amino acids in microbes and animals. However, such ability has not been identified in plants so far. We predicted a complete DAAO coding sequence consisting of 1158 bp and encoding a protein of 386 amino acids. We cloned this sequence from the leaf cDNA population of maize plants that could utilize D-alanine as a nitrogen source and grow normally on media containing D-Ala at the concentrations of 100 and 1000 ppm. For more understanding of DAAO ability in maize plant, we produced a recombinant plasmid by the insertion of isolated cDNA into the pMALc2X Escherichia coli expression vector, downstream of the maltose-binding protein coding sequence. The pMALc2X-DAAO vector was used to transform the TB1 strain of E. coli cells. Under normal growth conditions, fused DAAO (with molecular weight of about 78 kDa) was expressed up to 5 mg/liter of bacterial cells. The expressed product was purified by affinity chromatography and subjected to in vitro DAAO activity assay in the presence of five different D-amino acids. Fused DAAO could oxidize D-alanine and D-aspartate, but not D-leucine, D-isoleucine, and D-serine. The cDNA sequence reported in this paper has been submitted to EMBL databases under accession number AM407717.

Key words

D-amino acid oxidase D-amino acids Zea mays flavoenzyme overexpression 



D-amino acid oxidase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Curti, B., Ronchi, S., and Pilone, S. M. (1992) in Chemistry and Biochemistry of Flavoenzymes (Muller, F., ed.) CRC Press, pp. 69–94.Google Scholar
  2. 2.
    Jacobs, P., Brockly, F., Massaer, M., Loriau, R., Guillaume, J., Ciccarelli, E., Heinderyckx, M., Cravador, A., Biemans, R., van Elsen, A., Herzog, A., and Bollen, A. (1987) Gene, 59, 55–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Krebs, H. A. (1935) Biochem. J., 29, 1620–1644.PubMedGoogle Scholar
  4. 4.
    Konno, R., and Yasumura, Y. (1981) Zool. Mag., 90, 368–373.Google Scholar
  5. 5.
    Fukui, K., Watanabe, F., Shibata, T., and Miyake, Y. (1987) Biochemistry, 26, 3612–3618.PubMedCrossRefGoogle Scholar
  6. 6.
    Momoi, K., Fukui, K., Watanabe, F., and Miyake, Y. (1988) FEBS Lett., 238, 180–184.PubMedCrossRefGoogle Scholar
  7. 7.
    Tada, M., Fukui, K., Momoi, K., and Miyake, Y. (1990) Gene, 90, 293–297.PubMedCrossRefGoogle Scholar
  8. 8.
    Mizutani, H., Miyahara, I., Hirotsu, K., Nishina, Y., Shiga, K., Setoyama, C., and Miura, R. (1996) J. Biochem., 120, 14–17.PubMedGoogle Scholar
  9. 9.
    Sarower, M. G., Matsui, T., and Abe, H. (2003) J. Exp. Zool., 295, 151–159.CrossRefGoogle Scholar
  10. 10.
    Sarower, M. G., Okada, S., and Abe, H. (2005) Comp. Biochem. Physiol., 140, 417–425.CrossRefGoogle Scholar
  11. 11.
    Pistorius, E. K., and Voss, H. (1977) Biochim. Biophys. Acta, 481, 395–406.PubMedGoogle Scholar
  12. 12.
    Kubicek-Pranz, E. M., and Rohr, M. (1985) J. Appl. Biochem., 7, 104–113.PubMedGoogle Scholar
  13. 13.
    Pilone, S. M., Verga, R., Fretta, A., and Hanozet, G. M. (1989) J. Gen. Microbiol., 135, 593–600.Google Scholar
  14. 14.
    Isogai, T., Ono, H., Ishitani, Y., Kojo, H., Ueda, Y., and Kohsaka, M. (1990) J. Biochem., 108, 1063–1069.PubMedGoogle Scholar
  15. 15.
    Pollegioni, L., Buto, S., Tischer, W., Ghisla, S., and Pilone, M. S. (1993) Biochem. Mol. Biol. Int., 31, 709–717.PubMedGoogle Scholar
  16. 16.
    Fischer, L., Horner, R., Gabler, M., and Wagner, F. (1996) Ann. N. Y. Acad. Sci., 799, 683–688.PubMedCrossRefGoogle Scholar
  17. 17.
    Man, E. H., Fisher, G. H., Payan, I. L., Cadilla-Perezrios, R., Garcia, N. M., Chemburkar, R., Arends, G., and Frey, W. H. (1987) J. Neurochem., 48, 510–515.PubMedCrossRefGoogle Scholar
  18. 18.
    D’Aniello, A., D’Onofrio, G., Pischetola, M., D’Aniello, G., Vetere, A., Petrucelli, L., and Fisher, G. H. (1993) J. Biol. Chem., 268, 26941–26949.PubMedGoogle Scholar
  19. 19.
    Fisher, G. H. (1998) EXS, 85, 109–118.PubMedGoogle Scholar
  20. 20.
    Mothel, J. P., Rouaud, E., Sinet, P.-M., Potier, B., Jouvenceau, A., Dutar, P., Videau, C., Epelbaum, J., and Billard, J.-M. (2006) Aging Cell, 5, 267–271.CrossRefGoogle Scholar
  21. 21.
    Fischer, L. (1998) Recent Res. Devel. Microbiol., 2, 295–317.Google Scholar
  22. 22.
    Riethorst, W., and Reichert, A. (1999) Chemia, 53, 600–607.Google Scholar
  23. 23.
    Conlon, H. D., Baqal, J., Baker, K., Shen, Y. Q., Wong, B. L., Nolles, R., and Rausch, C. W. (1995) Biotechnol. Bioeng., 46, 510–513.PubMedCrossRefGoogle Scholar
  24. 24.
    Kulys, J., and Schmid, R. D. (1991) Biosens. Bioelectron., 6, 43–48.CrossRefGoogle Scholar
  25. 25.
    Erickson, O., Hertzberg, M., and Nasholm, T. (2004) Nature Biotechnol., 22, 455–458.CrossRefGoogle Scholar
  26. 26.
    Pollegioni, L., Molla, G., Campaner, S., Martegani, E., and Pilone, M. S. (1997) J. Biotechnol., 58, 115–123.PubMedCrossRefGoogle Scholar
  27. 27.
    Molla, G., Vegezzi, C., Pilone, M. S., and Pollegioni, L. (1998) Prot. Exp. Purif., 14, 289–294.CrossRefGoogle Scholar
  28. 28.
    Lin, L., Chien, H. R., Wang, W., Hwang, T., Fu, H., and Hsu, W. (2000) Enz. Microb. Technol., 27, 482–491.CrossRefGoogle Scholar
  29. 29.
    Laemmli, K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson, T. (1976) Life Sci., 19, 1097–1102.PubMedCrossRefGoogle Scholar
  31. 31.
    Manabe, H., Yamauchi, M., and Ohira, K. (1981) Plant Cell Physiol., 22, 333–336.Google Scholar
  32. 32.
    Gamburg, K. Z., and Rekoslavskaya, N. L. (1991) Fiziol. Rast., 38, 1236–1246.Google Scholar
  33. 33.
    Bruckner, H., and Westhauser, T. (2003) Amino Acids, 24, 43–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Patzold, R., and Bruckner, H. (2005) J. Agric. Food Chem., 53, 9722–9729.PubMedCrossRefGoogle Scholar
  35. 35.
    Atoh, S., and Esashi, Y. (1980) Planta, 149, 64–68.CrossRefGoogle Scholar
  36. 36.
    Monabe, H., and Ohira, K. (1984) Plant Cell Physiol., 25, 349–354.Google Scholar
  37. 37.
    Tishkov, V. L., and Khoronenkova, S. V. (2005) Biochemistry (Moscow), 70, 40–54.Google Scholar
  38. 38.
    Horner, R., Wagner, F., and Fischer, L. (1996) Appl. Environ. Microbiol., 62, 2106–2110.PubMedGoogle Scholar
  39. 39.
    Molla, G., Motteran, L., Piubelli, L., Pilone, M. S., and Pollegioni, L. (2003) Yeast, 20, 1061–1069.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Research Institute for Fundamental Sciences (RIFS)University of TabrizTabrizIran
  2. 2.Department of Plant Breeding and BiotechnologyUniversity of TabrizTabrizIran

Personalised recommendations