Biochemistry (Moscow)

, Volume 74, Issue 1, pp 68–74 | Cite as

Mutant reaction centers of Rhodobacter sphaeroides I(L177)H with strongly bound bacteriochlorophyll a: Structural properties and pigment-protein interactions

  • A. A. Zabelin
  • T. Y. Fufina
  • L. G. Vasilieva
  • V. A. Shkuropatova
  • M. G. Zvereva
  • A. Y. ShkuropatovEmail author
  • V. A. Shuvalov


Methods of photoinduced Fourier transform infrared (FTIR) difference spectroscopy and circular dichroism were employed for studying features of pigment-protein interactions caused by replacement of isoleucine L177 by histidine in the reaction center (RC) of the site-directed mutant I(L177)H of Rhodobacter sphaeroides. A functional state of pigments in the photochemically active cofactor branch was evaluated with the method of photo-accumulation of reduced bacteriopheophytin H A . The results are compared with those obtained for wild-type RCs. It was shown that the dimeric nature of the radical cation of the primary electron donor P was preserved in the mutant RCs, with an asymmetric charge distribution between the bacteriochlorophylls PA and PB in the P+ state. However, the dimers P in the wild-type and mutant RCs are not structurally identical due probably to molecular rearrangements of the PA and PB macrocycles and/or alterations in their nearest amino acid environment induced by the mutation. Analysis of the electronic absorption and FTIR difference P+Q/PQ spectra suggests the 173-ester group of the bacteriochlorophyll PA to be involved in covalent interaction with the I(L177)H RC protein. Incorporation of histidine into the L177 position does not modify the interaction between the primary electron acceptor bacteriochlorophyll BA and the bacteriopheophytin HA. Structural changes are observed in the monomer bacteriochlorophyll BB binding site in the inactive chromophore branch of the mutant RCs.

Key words

Rhodobacter sphaeroides mutant reaction centers bacteriochlorophyll a trans-esterification reaction covalent bond 







circular dichroism


Fourier transform infrared spectroscopy




primary electron donor


reaction center


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shuvalov, V. A. (1990) Primary Light Energy Transformation in Photosynthesis [in Russian], Nauka, Moscow.Google Scholar
  2. 2.
    Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure, 2, 925–936.PubMedCrossRefGoogle Scholar
  3. 3.
    Straley, S. C., Parson, W. W., Mauzerall, D. C., and Clayton, R. K. (1973) Biochim. Biophys. Acta, 305, 597–609.PubMedCrossRefGoogle Scholar
  4. 4.
    Van der Rest, M., and Gingras, G. (1974) J. Biol. Chem., 249, 6446–6453.PubMedGoogle Scholar
  5. 5.
    Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Ya., and Shuvalov, V. A. (2007) FEBS Lett., 581, 5769–5773.PubMedCrossRefGoogle Scholar
  6. 6.
    Fiedor, L., Rosenbach-Belkin, V., Sai, M., and Scherz, A. (1996) Plant. Physiol. Biochem., 34, 393–398.CrossRefGoogle Scholar
  7. 7.
    Rau, H. K., Snigula, H., Struck, A., Robert, B., Scheer, H., and Haehnel, W. (2001) Eur. J. Biochem., 268, 3284–3295.PubMedCrossRefGoogle Scholar
  8. 8.
    Khatypov, R. A., Vasilieva, L. G., Fufina, T. Yu., Bolgarina, T. I., and Shuvalov, V. A. (2005) Biochemistry (Moscow), 70, 1256–1261.CrossRefGoogle Scholar
  9. 9.
    Philipson, K. D., and Sauer, K. (1973) Biochemistry, 12, 535–539.PubMedCrossRefGoogle Scholar
  10. 10.
    Mantele, W. (1993) in The Photosynthetic Reaction Center (Deisenhofer, H., and Norris, J. R., eds.) Vol. II, Academic Press, San Diego, pp. 239–283.Google Scholar
  11. 11.
    Jones, M. R., Visschers, R. W., van Grondelle, R., and Hunter, C. N. (1992) Biochemistry, 31, 4458–4465.PubMedCrossRefGoogle Scholar
  12. 12.
    Shuvalov, V. A., and Asadov, A. A. (1979) Biochim. Biophys. Acta, 545, 296–308.PubMedCrossRefGoogle Scholar
  13. 13.
    Breeze, R. H., and Ke, B. (1972) Analyt. Biochem., 50, 281–303.PubMedCrossRefGoogle Scholar
  14. 14.
    Okamura, M. Y., Isaacson, R. A., and Feher, G. (1979) Biochim. Biophys. Acta, 546, 394–417.PubMedCrossRefGoogle Scholar
  15. 15.
    Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, V. A., and Shkuropatova, V. A. (1986) Biochim. Biophys. Acta, 849, 337–346.CrossRefGoogle Scholar
  16. 16.
    Creighton, T. E. (1994) Protein Structure and Molecular Properties, W. H. Freeman and Co., New York.Google Scholar
  17. 17.
    Williams, J. C., Alden, R. G., Murchison, H. A., Peloquin, J. M., Woodbury, N. W., and Allen, J. P. (1992) Biochemistry, 31, 11029–11037.PubMedCrossRefGoogle Scholar
  18. 18.
    Sauer, K., Dratz, E. A., and Coyne, L. (1968) Proc. Natl. Acad. Sci. USA, 61, 17–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Reed, D. W., and Ke, B. (1973) J. Biol. Chem., 248, 3041–3045.PubMedGoogle Scholar
  20. 20.
    Struck, A., Cmiel, E., Katheder, I., and Scheer, H. (1990) FEBS Lett., 268, 180–184.PubMedCrossRefGoogle Scholar
  21. 21.
    Mar, T., and Gingras, G. (1995) Biochemistry, 34, 9071–9078.PubMedCrossRefGoogle Scholar
  22. 22.
    Clayton, R. (1980) Photosynthesis: Physical Mechanisms and Chemical Patterns, Cambridge University Press, Cambridge.Google Scholar
  23. 23.
    Xie, X., and Simon, J. D. (1991) Biochim. Biophys. Acta, 1057, 132–139.Google Scholar
  24. 24.
    Breton, J., Nabedryk, E., and Parson, W. W. (1992) Biochemistry, 31, 7503–7510.PubMedCrossRefGoogle Scholar
  25. 25.
    Reimers, J. R., and Hush, N. S. (2003) J. Chem. Phys., 119, 3262–3277.CrossRefGoogle Scholar
  26. 26.
    Nabedryk, E., Allen, J. P., Taguchi, A. K. W., Williams, J. C., Woodbury, N. W., and Breton, J. (1993) Biochemistry, 32, 13879–13885.PubMedCrossRefGoogle Scholar
  27. 27.
    Nabedryk, E., Schulz, C., Muh, F., Lubitz, W., and Breton, J. (2000) Photochem. Photobiol., 71, 582–588.PubMedCrossRefGoogle Scholar
  28. 28.
    Vasilieva, L. G., Fufina, T. Y., Khatypov, R. A., Proskuryakov, I. I., Zabelin, A. A., Shkuropatov, A. Y., and Shuvalov, V. A. (2007) in 7th Int. Conf. on Tetrapyrrole Photoreceptors in Photosynthetic Organisms, Kyoto, Japan, Book of Abstracts, p. 93.Google Scholar
  29. 29.
    Johnson, E. T., Muh, F., Nabedryk, E., Williams, J. C., Allen, J. P., Lubitz, W., Breton, J., and Parson, W. W. (2002) J. Phys. Chem. B, 106, 11859–11869.CrossRefGoogle Scholar
  30. 30.
    Leonhard, M., Wollenweber, A., Berger, G., Kleo, J., Nabedryk, E., Breton, J., and Mantele, W. (1989) in Techniques and New Developments in Photosynthesis Research (Barber, J., and Malkin, R., eds.) Vol. 168, NATO ASI Series, Plenum, New York, pp. 115–118.Google Scholar
  31. 31.
    Struck, A., Cmiel, E., Katheder, I., Schafer, W., and Scheer, H. (1992) Biochim. Biophys. Acta, 1101, 321–328.CrossRefGoogle Scholar
  32. 32.
    Tsuchiya, T., Suzuki, T., Yamada, T., Shimada, H., Masuda, T., Ohta, H., and Takamiya, K. (2003) Plant Cell Physiol., 44, 96–101.PubMedCrossRefGoogle Scholar
  33. 33.
    Arkus, K. J. A., Cahoon, E. B., and Jez, J. M. (2005) Arch. Biochem. Biophys., 438, 146–155.PubMedCrossRefGoogle Scholar
  34. 34.
    Michalski, T. J., Hunt, J. E., Bradshaw, C., Wagner, A. M., Norris, J. R., and Katz, J. J. (1987) J. Am. Chem. Soc., 110, 5888–5891.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. A. Zabelin
    • 1
  • T. Y. Fufina
    • 1
  • L. G. Vasilieva
    • 1
  • V. A. Shkuropatova
    • 1
  • M. G. Zvereva
    • 1
  • A. Y. Shkuropatov
    • 1
    Email author
  • V. A. Shuvalov
    • 1
  1. 1.Institute of Basic Biological ProblemsPushchino, Moscow RegionRussia

Personalised recommendations