Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 1, pp 41–46 | Cite as

Self-assembly of fibrin monomers and fibrinogen aggregation during ozone oxidation

  • M. A. RosenfeldEmail author
  • V. B. Leonova
  • M. L. Konstantinova
  • S. D. Razumovskii
Article

Abstract

The mechanism of self-assembly of fibrin monomers and fibrinogen aggregation during ozone oxidation has been studied by the methods of elastic and dynamic light-scattering and viscosimetry. Fibrin obtained from oxidized fibrinogen exhibits higher average fiber mass/length ratio compared with native fibrin. Fibrinogen ozonation sharply reduced the latent period preceding aggregation of protein molecules; however, the mechanism of self-assembly of ozonated and non-ozonated fibrinogen cluster was identical. In both cases flexible polymers are formed and reaching a certain critical length they form densely packed structures and aggregate. Using infrared spectroscopy, it has been shown that free radical oxidation of amino acid residues of fibrinogen polypeptide chains catalyzed by ozone results in formation of carbonyl, hydroxyl, and ether groups. It is concluded that fibrinogen peripheral D-domains are the most sensitive to ozonation, which causes local conformational changes in them. On one hand, these changes inhibit the reaction of longitudinal polymerization of monomeric fibrin molecules; on the other hand, they expose reaction centers responsible for self-assembly of fibrinogen clusters.

Key words

fibrinogen fibrin self-assembly oxidation structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mosesson, M. V. (2005) J. Thromb. Haemost., 3, 1894–1904.PubMedCrossRefGoogle Scholar
  2. 2.
    Weisel, J. V. (2005) Adv. Protein. Chem., 70, 247–299.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosenfeld, M. A., Kostanova, E. A., Vasil’eva, M. V., and Leonova, V. B. (2001) Izv. Rus. Akad. Nauk, Biol. Ser., No. 3, 293–298.Google Scholar
  4. 4.
    Leonova, V. B., Rosenfeld, M. A., Biryukova, M. I., and Kostanova, E. A. (2002) Izv. Ros. Akad. Nauk, Biol. Ser., No. 5, 522–526.Google Scholar
  5. 5.
    Rozenfel’d, M., and Vasil’eva, M. V. (1991) Biomed. Sci., 2, 155–161.PubMedGoogle Scholar
  6. 6.
    Rosenfel’d, M. A., Leonova, V. B., and Biryukova, M. I. (2007) Izv. Ros. Akad. Nauk, Biol. Ser., No. 4, 394–400.Google Scholar
  7. 7.
    Lushchak, V. I. (2007) Biochemistry (Moscow), 72, 809–827.CrossRefGoogle Scholar
  8. 8.
    Stadman, E. R., and Levine, R. L. (2003) Amino Acids, 25, 207–218.CrossRefGoogle Scholar
  9. 9.
    Stadtman, E. R. (2006) Free Rad. Res., 40, 1250–1258.CrossRefGoogle Scholar
  10. 10.
    Shacter, E., Williams, J. A., and Lim, M. (1994) Free Rad. Biol. Med., 17, 429–436.PubMedCrossRefGoogle Scholar
  11. 11.
    Dijkgraaf, L. C., Zaardeneta, G., Corddewener, F. W., Liems, R. S., Schmitz, J. P., de Bont, L. G., and Milan, S. B. (2003) J. Oral Maxillofac. Surg., 61, 101–111.PubMedCrossRefGoogle Scholar
  12. 12.
    Roitman, E. V., Azizova, O. A., Morozov, Yu. A., and Aseitchev, A. V. (2004) Byul. Eksp. Biol. Med., 138, 277–279.CrossRefGoogle Scholar
  13. 13.
    Shacter, E., Williams, J. A., and Levine, R. F. (1995) Free Rad. Biol. Med., 18, 815–831.PubMedCrossRefGoogle Scholar
  14. 14.
    Belisario, M. A., di Domenico, C., Pelagalli, A., Della Morte, R., and Staiano, N. (1997) Biochimie, 79, 449–455.PubMedCrossRefGoogle Scholar
  15. 15.
    Stief, T. W., Marx, R., and Heimburger, N. (1989) Thromb. Res., 56, 221–228.PubMedCrossRefGoogle Scholar
  16. 16.
    Roitman, E. V., Azizova, O. A., Morozov, Yu. A., and Aseitchev, A. V. (2004) Byul. Eksp. Biol. Med., 138, 527–530.CrossRefGoogle Scholar
  17. 17.
    Azizova, O. A., Maksyanina, E. V., Romanov, Yu. A., Aseitchev, A. V., and Scheglovitova, O. N. (2004) Byul. Eksp. Biol. Med., 137, 406–409.CrossRefGoogle Scholar
  18. 18.
    Scheglovitova, O. N., Azizova, O. A., Romanov, Yu. A., Aseitchev, A. V., Litvina, M. M., Polosukhina, E. R., and Mironchenkova, E. V. (2006) Byul. Eksp. Biol. Med., 142, 277–281.CrossRefGoogle Scholar
  19. 19.
    Rosenfel’d, M. A., Leonova, V. B., Biryukova, M. I., Vasil’eva, M. V., and Kostanova, E. A. (1999) Dokl. Ros. Akad. Nauk, 367, 269–272.Google Scholar
  20. 20.
    Hangman, R. R., and Hermans, J. (1979) J. Biol. Chem., 254, 11272–11277.Google Scholar
  21. 21.
    Zholi, M. M. (1968) Physical Chemistry of Protein Denaturation [Russian translation], Mir, Moscow, pp. 106–107.Google Scholar
  22. 22.
    Berlett, B. S., Levine, R. L., and Stadman, E. R. (1996) J. Biol. Chem., 271, 4177–4182.PubMedCrossRefGoogle Scholar
  23. 23.
    Carr, M. E., and Hermans, J. (1978) Macromolecules, 11, 46–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Casassa, E. F. (1955) J. Chem. Phys., 23, 596–597.CrossRefGoogle Scholar
  25. 25.
    Kratky, O., and Porod, G. (1949) J. Colloid Interface Sci., 4, 35–70.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. A. Rosenfeld
    • 1
    Email author
  • V. B. Leonova
    • 1
  • M. L. Konstantinova
    • 1
  • S. D. Razumovskii
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations