Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 13, pp 1388–1404 | Cite as

Mechanisms of single-stranded DNA-binding protein functioning in cellular DNA metabolism

  • P. E. Pestryakov
  • O. I. LavrikEmail author
Review

Abstract

This review deals with analysis of mechanisms involved in coordination of DNA replication and repair by SSB proteins; characteristics of eukaryotic, prokaryotic, and archaeal SSB proteins are considered, which made it possible to distinguish general mechanisms specific for functioning of proteins from organisms of different life domains. Mechanisms of SSB protein interactions with DNA during metabolism of the latter are studied; structural organization of the SSB protein complexes with DNA, as well as structural and functional peculiarities of different SSB proteins are analyzed.

Key words

SSB proteins replication protein A protein-DNA complexes DNA replication DNA repair 

Abbreviations

a.a.

amino acid residues

dsDNA

double-stranded DNA

ecoSSB

Escherichia coli SSB

hsRPA

Homo sapiens RPA

NER

nucleotide excision repair

nt

nucleotide

OB domain

oligosaccharide/oligonucleotide-binding domain

PCNA

proliferating cell nuclear antigen

pol-prim

DNA polymerase α-primase complex

RFC

replication factor C

RPA

replication protein A

SSB

single-stranded DNA-binding protein

ssDNA

single-stranded DNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wold, M. S. (1997) Annu. Rev. Biochem., 66, 61–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Lohman, T. M., and Ferrari M. E. (1994) Annu. Rev. Biochem., 63, 527–570.PubMedGoogle Scholar
  3. 3.
    Cha, T. A., and Alberts, B. M. (1989) J. Biol. Chem., 264, 12220–12225.PubMedGoogle Scholar
  4. 4.
    Kim, Y. T., and Richardson, C. C. (1993) Proc. Natl. Acad. Sci. USA, 90, 10173–10177.PubMedCrossRefGoogle Scholar
  5. 5.
    Perales, C., Cava, F., and Meijer, W. J. J. (2003) Nucleic Acids Res., 31, 6473–6380.PubMedCrossRefGoogle Scholar
  6. 6.
    Chase, J. W., and Williams, K. R. (1986) Annu. Rev. Biochem., 55, 103–136.PubMedCrossRefGoogle Scholar
  7. 7.
    Zou, Y., Liu, Y., Wu, X., and Shell, S. M. (2006) J. Cell. Physiol., 208, 267–273.PubMedCrossRefGoogle Scholar
  8. 8.
    Stein, G. S., Zaidi, S. K., Braastad, C. D., Montecino, M., van Wijnen, A. J., Choi, J. Y., Stein, J. L., Lian, J. B., and Javed, A. (2003) Trends Cell. Biol., 13, 584–592.PubMedCrossRefGoogle Scholar
  9. 9.
    Davey, M. J., and O’Donnell, M. (2000) Curr. Opin. Chem. Biol., 4, 581–586.PubMedCrossRefGoogle Scholar
  10. 10.
    Kur, J., Olszewski, M., Dlugolecka, A., and Filipkowski, P. (2005) Acta Biochim. Pol., 52, 569–574.PubMedGoogle Scholar
  11. 11.
    Yuzhakov, A., Kelman, Z., Hurwitz, J., and O’Donnell, M. (1999) EMBO J., 18, 6189–6199.PubMedCrossRefGoogle Scholar
  12. 12.
    Maga, G., Stucki, M., Spadari, S., and Hubscher, U. (2000) J. Mol. Biol., 295, 791–801.PubMedCrossRefGoogle Scholar
  13. 13.
    Carty, M. P., Levine, A. S., and Dixon, K. (1992) Mutat. Res., 274, 29–34.PubMedGoogle Scholar
  14. 14.
    Maga, G., Frouin, I., Spadari, S., and Hubscher, U. (2001) J. Biol. Chem., 276, 18235–18242.PubMedCrossRefGoogle Scholar
  15. 15.
    Robbins, J. B., Murphy, M. C., White, B. A., Mackie, R. I., Ha, T., and Cann, I. K. (2004) J. Biol. Chem., 279, 6315–6326.PubMedCrossRefGoogle Scholar
  16. 16.
    Cann, I. K., Ishino, S., Yuasa, M., Daiyasu, H., Toh, H., and Ishino, Y. (2001) J. Bacteriol., 183, 2614–2623.PubMedCrossRefGoogle Scholar
  17. 17.
    Robbins, J. B., McKinney, M. C., Guzman, C. E., Sriratana, B., Fitz-Gibbon, S., Ha, T., and Cann, I. K. (2005) J. Biol. Chem., 280, 15325–15339.PubMedCrossRefGoogle Scholar
  18. 18.
    Kelman, Z., Pietrokovski, S., and Hurwitz, J. (1999) J. Biol. Chem., 274, 28751–28761.PubMedCrossRefGoogle Scholar
  19. 19.
    Stauffer, M. E., and Chazin, W. J. (2004) J. Biol. Chem., 279, 30915–30918.PubMedCrossRefGoogle Scholar
  20. 20.
    Benkovic, S. J., Valentine, A. M., and Salinas, F. (2001) Annu. Rev. Biochem., 70, 181–208.PubMedCrossRefGoogle Scholar
  21. 21.
    Khlimankov, D. Yu., Rechkunova, N. A., and Lavrik, O. I. (2004) Biochemistry (Moscow), 69, 248–261.CrossRefGoogle Scholar
  22. 22.
    Rademakers, S., Volker, M., Hoogstraten, D., Nigg, A. L., Mone, M. J., van Zeeland, A. A., Hoeijmakers, J. H., Houtsmuller, A. B., and Vermeulen, W. (2003) Mol. Cell. Biol., 23, 5755–5767.PubMedCrossRefGoogle Scholar
  23. 23.
    Essers, J., Houtsmuller, A. B., van Veelen, L., Paulusma, C., Nigg, A. L., Pastink, A., Vermeulen, W., Hoeijmakers, J. H., and Kanaar, R. (2002) EMBO J., 21, 2030–2037.PubMedCrossRefGoogle Scholar
  24. 24.
    Arunkumar, A. I., Stauffer, M. E., Bochkareva, E., Bochkarev, A., and Chazin, W. J. (2003) J. Biol. Chem., 17, 41077–41082.CrossRefGoogle Scholar
  25. 25.
    Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) J. Mol. Biol., 247, 536–540.PubMedGoogle Scholar
  26. 26.
    Murzin, A. G. (1993) EMBO J., 12, 861–867.PubMedGoogle Scholar
  27. 27.
    Theobald, D. L., Mitton-Fry, R. M., and Wuttke, D. S. (2003) Annu. Rev. Biophys. Biomol. Struct., 32, 115–133.PubMedCrossRefGoogle Scholar
  28. 28.
    Williams, K. R., Spicer, E. K., LoPresti, M. B., Guggenheimer, R. A., and Chase, J. W. (1983) J. Biol. Chem., 258, 3346–3355.PubMedGoogle Scholar
  29. 29.
    Carlini, L., Curth, U., Kindler, B., Urbanke, C., and Porter, R. D. (1998) FEBS Lett., 430, 197–200.PubMedCrossRefGoogle Scholar
  30. 30.
    Iftode, C., Daniely, Y., and Borowiec, J. A. (1999) Crit. Rev. Biochem. Mol. Biol., 34, 141–180.PubMedCrossRefGoogle Scholar
  31. 31.
    Bochkareva, E., Korolev, S., Lees-Miller, S. P., and Bochkarev, A. (2002) EMBO J., 21, 1855–1863.PubMedCrossRefGoogle Scholar
  32. 32.
    Daughdrill, G. W., Buchko, G. W., Botuyan, M. V., Arrowsmith, C., Wold, M. S., Kennedy, M. A., and Lowry, D. F. (2003) Nucleic Acids Res., 31, 4176–4183.PubMedCrossRefGoogle Scholar
  33. 33.
    Weisshart, K., Taneja, P., and Fanning, E. (1998) J. Virol., 72, 9771–9781.PubMedGoogle Scholar
  34. 34.
    Golub, E. I., Gupta, R. C., Haaf, T., Wold, M. S., and Radding, C. M. (1998) Nucleic Acids Res., 26, 5388–5393.PubMedCrossRefGoogle Scholar
  35. 35.
    Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., Liao, J. C., Okorokov, A. L., Milner, J., Arrowsmith, C. H., and Bochkarev, A. (2005) Proc. Natl. Acad. Sci. USA, 102, 15412–15417.PubMedCrossRefGoogle Scholar
  36. 36.
    Daughdrill, G. W., Ackerman, J., Isern, N. G., Botuyan, M. V., Arrowsmith, C., Wold, M. S., and Lowry, D. F. (2001) Nucleic Acids Res., 29, 3270–3276.PubMedCrossRefGoogle Scholar
  37. 37.
    He, Z., Brinton, B. T., Greenblatt, J., Hassell, J. A., and Ingles, C. J. (1993) Cell, 73, 1223–1232.PubMedCrossRefGoogle Scholar
  38. 38.
    Mer, G., Bochkarev, A., Gupta, R., Bochkareva, E., Frappier, L., Ingles, C. J., Edwards, A. M., and Chazin, W. J. (2000) Cell, 103, 449–456.PubMedCrossRefGoogle Scholar
  39. 39.
    Gajiwala, K. S., and Burley, S. K. (2000) Curr. Opin. Struct. Biol., 10, 110–116.PubMedCrossRefGoogle Scholar
  40. 40.
    Braun, K. A., Lao, Y., He, Z., Ingles, C. J., and Wold, M. S. (1997) Biochemistry, 36, 8443–8454.PubMedCrossRefGoogle Scholar
  41. 41.
    Stauffer, M. E., and Chazin, W. J. (2004) J. Biol. Chem., 279, 25638–25645.PubMedCrossRefGoogle Scholar
  42. 42.
    Kelly, T. J., Simancek, P., and Brush, G. S. (1998) Proc. Natl. Acad. Sci. USA, 95, 14634–14639.PubMedCrossRefGoogle Scholar
  43. 43.
    Philipova, D., Mullen, J. R., Maniar, H. S., Lu, J., Gu, C., and Brill, S. J. (1996) Genes Dev., 10, 2222–2233.PubMedCrossRefGoogle Scholar
  44. 44.
    De Vries, J., and Wackernagel, W. (1993) Gene, 127, 39–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Genschel, J., Litz, L., Thole, H., Roemling, U., and Urbanke, C. (1996) Gene, 182, 137–143.PubMedCrossRefGoogle Scholar
  46. 46.
    Purnapatre, K., and Varshney, U. (1999) Eur. J. Biochem., 264, 591–598.PubMedCrossRefGoogle Scholar
  47. 47.
    Sancar, A., Williams, K., Chase, J., and Rupp, W. (1981) Proc. Natl. Acad. Sci. USA, 78, 4274–4278.PubMedCrossRefGoogle Scholar
  48. 48.
    Weiner, J. H., Bertsch, L. L., and Kornberg, A. (1975) J. Biol. Chem., 250, 1972–1980.PubMedGoogle Scholar
  49. 49.
    Webster, G., Genschel, J., Curth, U., Urbanke, C., Kang, C., and Hilgenfeld, R. (1997) FEBS Lett., 411, 313–316.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang, C., Curth, U., Urbanke, C., and Kang, C.-H. (1997) Nat. Struct. Biol., 4, 153–157.PubMedCrossRefGoogle Scholar
  51. 51.
    Curth, U., Urbanke, C., Greipel, J., Gerberding, H., Tiranti, V., and Zeviani, M. (1994) Eur. J. Biochem., 221, 435–443.PubMedCrossRefGoogle Scholar
  52. 52.
    Dabrowski, S., Olszewski, M., Piatek, R., Brillowska-Dabrowska, A., Konopa, G., and Kur, J. (2002) Microbiology, 148, 3307–3315.PubMedGoogle Scholar
  53. 53.
    Eggington, J. M., Haruta, N., Wood, E. A., and Cox, M. M. (2004) BMC Microbiol., 4, 2.PubMedCrossRefGoogle Scholar
  54. 54.
    Witte, G., Urbanke, C., and Curth, U. (2005) Nucleic Acids Res., 33, 1662–1670.PubMedCrossRefGoogle Scholar
  55. 55.
    Bernstein, D. A., Eggington, J. M., Killoran, M. P., Misic, A. M., Cox, M. M., and Keck, J. L. (2004) Proc. Natl. Acad. Sci. USA, 101, 8575–8580.PubMedCrossRefGoogle Scholar
  56. 56.
    Bochkarev, A., Pfuetzner, R. A., Edwards, A. M., and Frappier, L. (1997) Nature, 385, 176–181.PubMedCrossRefGoogle Scholar
  57. 57.
    Lin, Y., Robbins, J. B., Nyannor, E. K., Chen, Y. H., and Cann, I. K. (2005) J. Bacteriol., 187, 7881–7889.PubMedCrossRefGoogle Scholar
  58. 58.
    Lin, Y. L., Shivji, K. K., Chen, C., Kolodner, R., Wood, R. D., and Dutta, A. (1998) J. Biol. Chem., 273, 1453–1461.PubMedCrossRefGoogle Scholar
  59. 59.
    Bochkareva, E., Frappier, L., Edwards, A. M., and Bochkarev, A. (1998) J. Biol. Chem., 273, 3932–3936.PubMedCrossRefGoogle Scholar
  60. 60.
    Bochkarev, A., Bochkareva, E., Frappier, L., and Edwards, A. M. (1999) EMBO J., 18, 4498–4504.PubMedCrossRefGoogle Scholar
  61. 61.
    Chedin, F., Seitz, E. M., and Kowalczykowski, S. C. (1998) Trends Biochem. Sci., 23, 273–277.PubMedCrossRefGoogle Scholar
  62. 62.
    Kerr, I. D., Wadsworth, R. I., Cubeddu, L., Blankenfeldt, W., Naismith, J. H., and White, M. F. (2003) EMBO J., 22, 2561–2570.PubMedCrossRefGoogle Scholar
  63. 63.
    Wadsworth, R. I., and White, M. F. (2001) Nucleic Acids Res., 29, 914–920.PubMedCrossRefGoogle Scholar
  64. 64.
    Bochkarev, A., and Bochkareva, E. (2004) Curr. Opin. Struct. Biol., 14, 36–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Raghunathan, S., Ricard, C. S., Lohman, T. M., and Waksman, G. (1997) Proc. Natl. Acad. Sci. USA, 94, 6652–6657.PubMedCrossRefGoogle Scholar
  66. 66.
    Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000) Nat. Struct. Biol., 7, 648–652.PubMedCrossRefGoogle Scholar
  67. 67.
    Antson, A. A. (2000) Curr. Opin. Struct. Biol., 10, 87–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) Nucleic Acids Res., 28, 235–242.PubMedCrossRefGoogle Scholar
  69. 69.
    Carter, A. P., Clemons, W. M., Jr., Brodersen, D. E., Morgan-Warren, R. J., Hartsch, T., Wimberly, B. T., and Ramakrishnan, V. (2001) Science, 291, 498–501.PubMedCrossRefGoogle Scholar
  70. 70.
    Bochkareva, E., Belegu, V., Korolev, S., and Bochkarev, A. (2001) EMBO J., 20, 612–618.PubMedCrossRefGoogle Scholar
  71. 71.
    Bogden, C. E., Fass, D., Bergman, N., Nichols, M. D., and Berger, J. M. (1999) Mol. Cell, 3, 487–493.PubMedCrossRefGoogle Scholar
  72. 72.
    Peersen, O. B., Ruggles, J. A., and Schultz, S. C. (2002) Nat. Struct. Biol., 9, 182–187.PubMedGoogle Scholar
  73. 73.
    Savvides, S. N., Raghunathan, S., Futterer, K., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2004) Protein Sci., 13, 1942–1947.PubMedCrossRefGoogle Scholar
  74. 74.
    Grishin, N. V. (2001) Nucleic Acids Res., 29, 1703–1714.PubMedCrossRefGoogle Scholar
  75. 75.
    Matthews, J. M., and Sunde, M. (2002) IUBMB Life, 54, 351–355.PubMedCrossRefGoogle Scholar
  76. 76.
    Krishna, S. S., Majumdar, I., and Grishin, N. V. (2003) Nucleic Acids Res., 31, 532–550.PubMedCrossRefGoogle Scholar
  77. 77.
    Lachenmann, M. J., Ladbury, J. E., Dong, J., Huang, K., Carey, P., and Weiss, M. A. (2004) Biochemistry, 43, 13910–13925.PubMedCrossRefGoogle Scholar
  78. 78.
    Park, J. S., Wang, M., Park, S. J., and Lee, S. H. (1999) J. Biol. Chem., 274, 29075–29080.PubMedCrossRefGoogle Scholar
  79. 79.
    Komori, K., and Ishino, Y. (2001) J. Biol. Chem., 276, 25654–25660.PubMedCrossRefGoogle Scholar
  80. 80.
    Bochkareva, E., Korolev, S., and Bochkarev, A. (2000) J. Biol. Chem., 275, 27332–27338.PubMedGoogle Scholar
  81. 81.
    Bujalowski, W., Overman, L. B., and Lohman, T. M. (1988) J. Biol. Chem., 163, 4629–4640.Google Scholar
  82. 82.
    Kozlov, A. G., and Lohman, T. M. (2002) Biochemistry, 41, 11611–11627.PubMedCrossRefGoogle Scholar
  83. 83.
    Bastin-Shanower, S. A., and Brill, S. J. (2001) J. Biol. Chem., 276, 36446–36453.PubMedCrossRefGoogle Scholar
  84. 84.
    Lavrik, O. I., Kolpashchikov, D. M., Weisshart, K., Nasheuer, H. P., Khodyreva, S. N., and Favre, A. (1999) Nucleic Acids Res., 27, 4235–4240.PubMedCrossRefGoogle Scholar
  85. 85.
    Gomes, X. V., Henricksen, L. A., and Wold, M. S. (1996) Biochemistry, 35, 5586–5595.PubMedCrossRefGoogle Scholar
  86. 86.
    Pestryakov, P. E., Weisshart, K., Schlott, B., Khodyreva, S. N., Kremmer, E., Grosse, F., Lavrik, O. I., and Nasheuer, H.-P. (2003) J. Biol. Chem., 278, 17515–17524.PubMedCrossRefGoogle Scholar
  87. 87.
    Pestryakov, P. E., Krasikova, Yu. S., Petruseva, I. O., Khodyreva, S. N., and Lavrik, O. I. (2007) Dokl. AN SSSR, 412, 118–122.Google Scholar
  88. 88.
    De Laat, W. L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N. G., and Hoeijmakers, J. H. (1998) Genes Dev., 12, 2598–2609.PubMedCrossRefGoogle Scholar
  89. 89.
    Treuner, K., Ramsperger, U., and Knippers, R. J. (1996) Mol. Biol., 259, 104–112.CrossRefGoogle Scholar
  90. 90.
    Blackwell, L. J., Borowiec, J. A., and Masrangelo, I. A. (1996) Mol. Cell. Biol., 16, 4798–4807.PubMedGoogle Scholar
  91. 91.
    Lohman, T. M., and Overman, L. B. (1985) J. Biol. Chem., 260, 3594–3603.PubMedGoogle Scholar
  92. 92.
    Kim, C., and Wold, M. S. (1995) Biochemistry, 34, 2058–2064.PubMedCrossRefGoogle Scholar
  93. 93.
    Brill, S. J., and Stillman, B. (1991) Genes Dev., 5, 1589–1600.PubMedCrossRefGoogle Scholar
  94. 94.
    Heyer, W.-D., Rao, M. R. S., Erdile, L. F., Kelly, T. J., and Kolodner, R. D. (1990) EMBO J., 9, 2321–2329.PubMedGoogle Scholar
  95. 95.
    Kolpashchikov, D. M., Khodyreva, S. N., Khlimankov, D. Y., Wold, M. S., Favre, A., and Lavrik, O. I. (2001) Nucleic Acids Res., 29, 373–379.PubMedCrossRefGoogle Scholar
  96. 96.
    Pestryakov, P. E., Khlimankov, D. Yu., Bochkareva, E., Bochkarev, A., and Lavrik, O. I. (2004) Nucleic Acids Res., 32, 1894–1903.PubMedCrossRefGoogle Scholar
  97. 97.
    Weisshart, K., Pestryakov, P., Smith, R. W., Hartmann, H., Kremmer, E., Lavrik, O., and Nasheuer, H.-P. (2004) J. Biol. Chem., 279, 35368–35376.PubMedCrossRefGoogle Scholar
  98. 98.
    Lohman, T. M., and Bujalowski, W. (1994) Biochemistry, 33, 6167–6176.PubMedCrossRefGoogle Scholar
  99. 99.
    Fanning, E., Klimovich, V., and Nager, A. R. (2006) Nucleic Acids Res., 34, 4126–4137.PubMedCrossRefGoogle Scholar
  100. 100.
    Mass, G., Nethanel, T., and Kaufmann, G. (1998) Mol. Cell. Biol., 18, 6399–6407.PubMedGoogle Scholar
  101. 101.
    Mass, G., Nethanel, T., Lavrik, O. I., Wold, M. S., and Kaufmann, G. (2001) Nucleic Acids Res., 29, 3892–3899.PubMedCrossRefGoogle Scholar
  102. 102.
    Krasikova, Yu. S., Belousova, E. A., Lebedeva, N. A., Pestryakov, P. E., and Lavrik, O. I. (2008) Biochemistry (Moscow), accepted for publication.Google Scholar
  103. 103.
    Maga, G., Shevelev, I., Villani, G., Spadari, S., and Hubscher, U. (2006) Nucleic Acids Res., 34, 1405–1415.PubMedCrossRefGoogle Scholar
  104. 104.
    Maga, G., Villani, G., Crespan, E., Wimmer, U., Ferrari, E., Bertocci, B., and Hubscher, U. (2007) Nature, 447, 606–608.PubMedCrossRefGoogle Scholar
  105. 105.
    Crespan, E., Hubscher, U., and Maga, G. (2007) Nucleic Acids Res., 35, 5173–5181.PubMedCrossRefGoogle Scholar
  106. 106.
    Gillet, L., and Scharer, O. (2006) Chem. Rev., 106, 253–276.PubMedCrossRefGoogle Scholar
  107. 107.
    Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1998) Mol. Cell., 2, 223–232.PubMedCrossRefGoogle Scholar
  108. 108.
    Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J. H., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. (2001) Mol. Cell., 8, 213–224.PubMedCrossRefGoogle Scholar
  109. 109.
    Rechkunova, N. I., Maltseva, E. A., and Lavrik, O. I. (2008) Mol. Biol. (Moscow), 42, 24–31.Google Scholar
  110. 110.
    Patrick, S. M., and Turchi, J. J. (1999) J. Biol. Chem., 274, 14972–14978.PubMedCrossRefGoogle Scholar
  111. 111.
    Missura, M., Buterin, T., Hindges, R., Hubscher, U., Kasparkova, J., Brabec, V., and Naegeli, H. (2001) EMBO J., 20, 3554–3564.PubMedCrossRefGoogle Scholar
  112. 112.
    Reardon, J. T., and Sancar, A. (2002) Mol. Cell Biol., 22, 5938–5945.PubMedCrossRefGoogle Scholar
  113. 113.
    Patrick, S. M., and Turchi, J. J. (1998) Biochemistry, 37, 8808–8815.PubMedCrossRefGoogle Scholar
  114. 114.
    Shuck, S. C., Short, E. A., and Turchi, J. J. (2008) Cell Res., 18, 64–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Smith, J., Zou, H., and Rothstein, R. (2000) Biochimie, 82, 71–78.PubMedCrossRefGoogle Scholar
  116. 116.
    Schramke, V., Luciano, P., Brevet, V., Guillot, S., Corda, Y., Longhese, M. P., Gilson, E., and Geli, V. (2004) Nat. Genet., 36, 46–54.PubMedCrossRefGoogle Scholar
  117. 117.
    Cohen, S., Jacob, E., and Manor, H. (2004) Biochim. Biophys. Acta, 1679, 129–140.PubMedGoogle Scholar
  118. 118.
    Salas, T. R., Petruseva, I., Lavrik, O., Bourdoncle, A., Mergny, J. L., Favre, A., and Saintome, C. (2006) Nucleic Acids Res., 34, 4857–4865.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations