Biochemistry (Moscow)

, Volume 73, Issue 12, pp 1300–1316 | Cite as

Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells

  • L. S. Agapova
  • B. V. Chernyak
  • L. V. Domnina
  • V. B. Dugina
  • A. Yu. Efimenko
  • E. K. Fetisova
  • O. Yu. Ivanova
  • N. I. Kalinina
  • N. V. Khromova
  • B. P. Kopnin
  • P. B. Kopnin
  • M. V. Korotetskaya
  • M. R. Lichinitser
  • A. L. Lukashev
  • O. Yu. Pletjushkina
  • E. N. Popova
  • M. V. Skulachev
  • G. S. Shagieva
  • E. V. Stepanova
  • E. V. Titova
  • V. A. Tkachuk
  • J. M. Vasiliev
  • V. P. Skulachev
Article

Abstract

It was proposed that increased level of mitochondrial reactive oxygen species (ROS), mediating execution of the aging program of an organism, could also be critical for neoplastic transformation and tumorigenesis. This proposal was addressed using new mitochondria-targeted antioxidant SkQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) that scavenges ROS in mitochondria at nanomolar concentrations. We found that diet supplementation with SkQ1 (5 nmol/kg per day) suppressed spontaneous development of tumors (predominantly lymphomas) in p53-/- mice. The same dose of SkQ1 inhibited the growth of human colon carcinoma HCT116/p53-/- xenografts in athymic mice. Growth of tumor xenografts of human HPV-16-associated cervical carcinoma SiHa was affected by SkQ1 only slightly, but survival of tumor-bearing animals was increased. It was also shown that SkQ1 inhibited the tumor cell proliferation, which was demonstrated for HCT116 p53-/- and SiHa cells in culture. Moreover, SkQ1 induced differentiation of various tumor cells in vitro. Coordinated SkQ1-initiated changes in cell shape, cytoskeleton organization, and E-cadherin-positive intercellular contacts were observed in epithelial tumor cells. In Ras- and SV40-transformed fibroblasts, SkQ1 was found to initiate reversal of morphological transformation of a malignant type, restoring actin stress fibers and focal adhesion contacts. SkQ1 suppressed angiogenesis in Matrigel implants, indicating that mitochondrial ROS could be important for tumor angiogenesis. This effect, however, was less pronounced in HCT116/p53-/- tumor xenografts. We have also shown that SkQ1 and related positively charged antioxidants are substrates of the P-glycoprotein multidrug resistance pump. The lower anti-tumor effect and decreased intracellular accumulation of SkQ1, found in the case of HCT116 xenografts bearing mutant forms of p53, could be related to a higher level of P-glycoprotein. The effects of traditional antioxidant N-acetyl-L-cysteine (NAC) on tumor growth and tumor cell phenotype were similar to the effects of SkQ1 but more than 1,000,000 times higher doses of NAC than those of SkQ1 were required. Extremely high efficiency of SkQ1, related to its accumulation in the mitochondrial membrane, indicates that mitochondrial ROS production is critical for tumorigenesis at least in some animal models.

Key words

mitochondria-targeted antioxidant tumorigenesis tumor cells 

Abbreviations

DCF

2′,7′-dichlorodihydrofluorescein diacetate

FBS

fetal bovine serum

MDR

multiple drug resistance

NAC

N-acetyl-L-cysteine

PBS

phosphate-buffered saline

ROS

reactive oxygen species

SkQ1

10-(6′-plastoquinonyl) decyltriphen-ylphosphonium

SkQR1

10-(6′-plastoquinonyl) decylrhodamine 19

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2008_1203_MOESM1_ESM.pdf (313 kb)
Supplementary material, approximately 313 KB.

References

  1. 1.
    Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.CrossRefGoogle Scholar
  2. 2.
    Hussain, S. P., Hofseth, L. J., and Harris, C. C. (2003) Nat. Rev. Cancer, 3, 276–285.CrossRefPubMedGoogle Scholar
  3. 3.
    Wallace, D. C. (2005) Cold Spring Harbor Symp. Quant. Biol., 70, 363–374.CrossRefPubMedGoogle Scholar
  4. 4.
    Wu, W. S. (2006) Cancer Metastasis Rev., 25, 695–705.CrossRefPubMedGoogle Scholar
  5. 5.
    Blanchetot, C., and Boonstra, J. (2008) Crit. Rev. Eukaryot. Gene Expr., 18, 35–45.PubMedGoogle Scholar
  6. 6.
    Kopnin, B. P. (2007) Mol. Biol. (Moscow), 41, 369–380.Google Scholar
  7. 7.
    Giles, G. I. (2006) Curr. Pharm. Des., 12, 4427–4443.CrossRefPubMedGoogle Scholar
  8. 8.
    Nagai, H., Noguchi, T., Takeda, K., and Ichijo, H. (2007) J. Biochem. Mol. Biol., 40, 1–6.PubMedGoogle Scholar
  9. 9.
    Alexandrova, A. Y., Kopnin, P. B., Vasiliev, J. M., and Kopnin, B. P. (2006) Exp. Cell Res., 312, 2066–2073.CrossRefPubMedGoogle Scholar
  10. 10.
    Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., and Chumakov, P. M. (2005) Nat. Med., 11, 1306–1313.CrossRefPubMedGoogle Scholar
  11. 11.
    Kopnin, P. B., Agapova, L. S., Kopnin, B. P., and Chumakov, P. M. (2007) Cancer Res., 67, 4571–4578.CrossRefGoogle Scholar
  12. 12.
    Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T. K., Hampton, G. M., and Wahl, G. M. (2002) Mol. Cell., 9, 1031–1044.CrossRefPubMedGoogle Scholar
  13. 13.
    Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. J. (1997) Science, 275, 1649–1652.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerald, D., Berra, E., Frapart, Y. M., Chan, D. A., Giaccia, A. J., Mansuy, D., Pouyssegur, J., Yaniv, M., and Mechta-Grigoriou, F. (2004) Cell, 118, 781–794.CrossRefPubMedGoogle Scholar
  15. 15.
    Khromova, N. V., Kopnin, P. B., Stepanova, E. V., Agapova, L. S., and Kopnin, B. P. (2008) Cancer Lett., submitted (Ms#CAN-S-08-00360).Google Scholar
  16. 16.
    Xia, C., Meng, Q., Liu, L. Z., Rojanasakul, Y., Wang, X. R., and Jiang, B. H. (2007) Cancer Res., 67, 10823–10830.CrossRefPubMedGoogle Scholar
  17. 17.
    Kopnin, B. P., Khromova, N. V., Kopnin, P. B., and Agapova, L. S. (2008) Clin. Oncohemat., 1, 3–11.Google Scholar
  18. 18.
    Carcamo, J. M., and Golde, D. W. (2006) Mutat. Res., 593, 64–79.PubMedGoogle Scholar
  19. 19.
    Skulachev, V. P. (1996) FEBS Lett., 397, 7–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Skulachev, V. P. (1996) Quart. Rev. Biophys., 29, 169–202.CrossRefGoogle Scholar
  21. 21.
    Skulachev, V. P. (2003) in Topics in Current Genetics, Vol. 3 (Nystrom, T., and Osiewac, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 191–238.Google Scholar
  22. 22.
    Zhang, D. X., and Gutterman, D. D. (2007) Am. J. Physiol. Heart Circ. Physiol., 292, H2023–2031.CrossRefPubMedGoogle Scholar
  23. 23.
    Scherz-Shouval, R., and Elazar, Z. (2007) Trends Cell Biol., 17, 422–427.CrossRefPubMedGoogle Scholar
  24. 24.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Yu., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Yu., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Yu., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  25. 25.
    Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. V., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasileva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.CrossRefGoogle Scholar
  26. 26.
    Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Zh., Grigorian, E. N., Grishanova, A. Yu., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Yu. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Schipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.CrossRefGoogle Scholar
  27. 27.
    Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Samoylova, T. A., Saprunova, V. B., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.CrossRefGoogle Scholar
  28. 28.
    Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. (1992) Nature, 356, 215–221.CrossRefPubMedGoogle Scholar
  29. 29.
    Jacks, T., Remington, L., Williams, B. O., Schmitt, E. M., Halachmi, S., Bronson, R. T., and Weinberg, R. A. (1994) Curr. Biol., 4, 1–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Soussi, T. (2005) in 25 Years of p53 Research (Hainaut, P., and Wiman, K. G., eds.) Springer, Dordrecht-Berlin-Heidelberg-New York, pp. 255–292.CrossRefGoogle Scholar
  31. 31.
    Shi, H., Calvez, F. L., Olivier, M., and Hainaut, P. (2005) in 25 Years of p53 Research (Hainaut, P., and Wiman, K. G., eds.) Springer, Dordrecht-Berlin-Heidelberg-New York, pp. 293–320.CrossRefGoogle Scholar
  32. 32.
    Chumakov, P. M. (2007) Biochemistry (Moscow), 72, 1399–1421.CrossRefGoogle Scholar
  33. 33.
    Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B. (1998) Science, 282, 1497–1500.CrossRefPubMedGoogle Scholar
  34. 34.
    Kalinina, E. V., Chernov, N. N., Saprin, A. N., Kotova, Y. N., Andreev, Y. A., Solomka, V. S., and Scherbak, N. P. (2006) Biochemistry (Moscow), 71, 1200–1206.CrossRefGoogle Scholar
  35. 35.
    Kopnin, B. P., Stromskaya, T. P., Kondratov, R. V., Ossovskaya, V. S., Pugacheva, E. N., Rybalkina, E. Y., Khokhlova, O. A., and Chumakov, P. M. (1995) Oncol. Res., 7, 299–306.PubMedGoogle Scholar
  36. 36.
    Huschtscha, L. I., and Holliday, R. (1983) J. Cell Sci., 63, 77–99.PubMedGoogle Scholar
  37. 37.
    Kopnin, P. B., Kravchenko, I. V., Furalyov, V. A., Pylev, L. N., and Kopnin, B. P. (2004) Oncogene, 23, 8834–8840.CrossRefPubMedGoogle Scholar
  38. 38.
    Sablina, A. A., Chumakov, P. M., and Kopnin, B. P. (2003) J. Biol. Chem., 278, 27362–27371.CrossRefPubMedGoogle Scholar
  39. 39.
    Logunov, D. Y., Ilyinskaya, G. V., Cherenova, L. V., Verhovskaya, L. V., Shmarov, M. M., Chumakov, P. M., Kopnin, B. P., and Naroditsky, B. S. (2004) Gene Ther., 11, 79–84.CrossRefPubMedGoogle Scholar
  40. 40.
    Hirota, K., and Semenza, G. L. (2006) Crit. Rev. Oncol. Hematol., 59, 15–26.CrossRefPubMedGoogle Scholar
  41. 41.
    Bell, E. L., Klimova, T. A., Eisenbart, J., Moraes, C. T., Murphy, M. P., Budinger, G. R., and Chande, N. S. (2007) J. Cell Biol., 177, 1029–1036.CrossRefPubMedGoogle Scholar
  42. 42.
    Sherr, C. J., and Roberts, J. M. (1999) Genes Dev., 13, 1501–1512.CrossRefPubMedGoogle Scholar
  43. 43.
    Mainprize, T. G., Taylor, M. D., Rutka, J. T., and Dirks, P. B. (2001) J. Neurooncol., 51, 205–218.CrossRefPubMedGoogle Scholar
  44. 44.
    Levine, A. J., Hu, W., and Feng, Z. (2006) Cell Death Differ., 13, 1027–1036.CrossRefPubMedGoogle Scholar
  45. 45.
    Harms, K., Nozell, S., and Chen, X. (2004) Cell Mol. Life Sci., 61, 822–842.CrossRefPubMedGoogle Scholar
  46. 46.
    Pugacheva, E. N., Roegiers, F., and Golemis, E. A. (2006) Curr. Opin. Cell Biol., 18, 507–515.CrossRefPubMedGoogle Scholar
  47. 47.
    Brembeck, F. H., Rosario, M., and Birchmeier, W. (2006) Curr. Opin. Genet. Dev., 16, 51–59.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang, J., Betson, M., Erasmus, J., Zeikos, K., Bailly, M., Cramer, L. P., and Braga, V. M. M. (2005) J. Cell Sci., 118, 5549–5562.CrossRefPubMedGoogle Scholar
  49. 49.
    Lozano, E., Betson, M., and Braga, V. M. M. (2003) BioEssays, 25, 452–463.CrossRefPubMedGoogle Scholar
  50. 50.
    Parasassi, T., Brunelli, R., Bracci-Laudiero, L., Greco, G., Gustafsson, A. C., Krasnowska, E. K., Lundeberg, J., Lundeberg, T., Pittaluga, E., Romano, M. C., and Serafino, A. (2005) Cell Death Differ., 12, 1285–1296.CrossRefPubMedGoogle Scholar
  51. 51.
    Campbell, P. M., and Der, C. J. (2004) Semin. Cancer Biol., 14, 105–114.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee, S., and Helfman, D. M. (2004) J. Biol. Chem., 279, 1885–1891.CrossRefPubMedGoogle Scholar
  53. 53.
    DesMarais, V., Ghosh, M., Eddy, R., and Condeelis, J. (2005) J. Cell Sci., 118, 19–26.CrossRefPubMedGoogle Scholar
  54. 54.
    Stavrovskaya, A. A. (2000) Biochemistry (Moscow), 65, 95–106.Google Scholar
  55. 55.
    Glavinas, H., Krajcsi, P., Cserepes, J., and Sarkadi, B. (2004) Curr. Drug Deliv., 1, 27–42.CrossRefPubMedGoogle Scholar
  56. 56.
    Thottassery, J. V., Zambetti, G. P., Arimori, K., Schuetz, E. G., and Schuetz, J. D. (1997) Proc. Natl. Acad. Sci. USA, 94, 11037–11042.CrossRefPubMedGoogle Scholar
  57. 57.
    Sampath, J., Sun, D., Kidd, V. J., Grenet, J., Gandhi, A., Shapiro, L. H., Wang, Q., Zambetti, G. P., and Schuetz, J. D. (2001) J. Biol. Chem., 276, 39359–29367.CrossRefPubMedGoogle Scholar
  58. 58.
    Kabanov, A. V., Batrakova, E. V., and Alakhov, V. Y. (2002) Adv. Drug Deliv. Rev., 54, 759–779.CrossRefPubMedGoogle Scholar
  59. 59.
    Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  60. 60.
    Qanungo, S., Wang, M., and Nieminen, A. L. (2004) J. Biol. Chem., 279, 50455–50464.CrossRefPubMedGoogle Scholar
  61. 61.
    Qanungo, S., Starke, D. W., Pai, H. V., Mieyal, J. J., and Nieminen, A. L. (2007) J. Biol. Chem., 282, 18427–18436.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • L. S. Agapova
    • 1
  • B. V. Chernyak
    • 2
  • L. V. Domnina
    • 2
  • V. B. Dugina
    • 2
  • A. Yu. Efimenko
    • 3
  • E. K. Fetisova
    • 2
  • O. Yu. Ivanova
    • 2
  • N. I. Kalinina
    • 3
  • N. V. Khromova
    • 1
  • B. P. Kopnin
    • 1
  • P. B. Kopnin
    • 4
  • M. V. Korotetskaya
    • 2
  • M. R. Lichinitser
    • 1
  • A. L. Lukashev
    • 5
  • O. Yu. Pletjushkina
    • 2
  • E. N. Popova
    • 2
  • M. V. Skulachev
    • 5
  • G. S. Shagieva
    • 2
  • E. V. Stepanova
    • 1
  • E. V. Titova
    • 2
  • V. A. Tkachuk
    • 3
  • J. M. Vasiliev
    • 1
    • 2
  • V. P. Skulachev
    • 2
    • 5
    • 6
  1. 1.Blokhin Russian Cancer Research CenterRussian Academy of Medical SciencesMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Cardiology Research CenterMoscowRussia
  4. 4.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  5. 5.Mitoengineering CenterLomonosov Moscow State UniversityMoscowRussia
  6. 6.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations