Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 11, pp 1192–1199 | Cite as

Study of spatial organization of chicken α-globin gene domain by 3c technique

  • A. A. GavrilovEmail author
  • S. V. Razin
Accelerated Publication

Abstract

This work deals with 3C (Chromosome Conformation Capture) analysis of the chicken α-globin gene domain in embryonic erythrocytes and lymphoid cells. Ligation products were quantitatively analyzed by real-time PCR with TaqMan probes. It was found that in lymphoid cells, where α-globin gene is not active, the domain has a relatively extended configuration. In embryonic erythrocytes that transcribe αD and αA genes, simultaneous interaction of several domain elements was revealed including the major regulatory element, the erythroid-specific DNase I hypersensitive site at a distance of 9 kb upstream from the α-globin gene cluster (-9 DHS), promoter of the housekeeping gene CGTHBA, the αD-globin gene promoter, and the erythroid-specific enhancer located after the α-globin gene cluster. We suppose that such interaction is necessary to provide for the active transcription status of the chicken α-globin gene domains in erythroid cells.

Key words

chicken α-globin gene domain genome spatial organization 3C real-time PCR with TaqMan probes 

Abbreviations

BAC

bacterial artificial chromosome

3C

chromosome conformation capture

DHS

DNase I hypersensitive sites

MRE

major regulatory element

YAC

yeast artificial chromosome

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Higgs, D. R., and Wood, W. C. (2008) Curr. Opin. Hematol., 15, 176–183.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang, H. B., Liu, D. P., and Liang, C. C. (2002) Int. J. Hematol., 76, 420–426.PubMedCrossRefGoogle Scholar
  3. 3.
    Recillas-Targa, F., and Razin, S. V. (2001) Crit. Rev. Eukaryot. Gene Exp., 11, 227–242.Google Scholar
  4. 4.
    Razin, S. V., and Ioudinkova, E. S. (2007) Biochemistry (Moscow), 72, 467–470.CrossRefGoogle Scholar
  5. 5.
    Flint, J., Tufarelli, C., Peden, J., Clark, K., Daniels, R. J., Hardison, R., Miller, W., Philipsen, S., Tan-Un, K. C., McMorrow, T., Frampton, J., Alter, B. P., Frischauf, A. M., and Higgs, D. R. (2001) Hum. Mol. Genet., 10, 371–382.PubMedCrossRefGoogle Scholar
  6. 6.
    Razin, S. V., Ioudinkova, E. S., and Scherrer, K. (2000) J. Mol. Biol., 209, 845–852.CrossRefGoogle Scholar
  7. 7.
    Razin, S. V., Shen, K., Ioudinkova, E., and Scherrer, K. (1999) J. Cell. Biochem., 74, 38–49.PubMedCrossRefGoogle Scholar
  8. 8.
    Vyas, P., Vickers, M. A., Picketts, D. J., and Higgs, D. R. (1995) Genomics, 29, 679–689.PubMedCrossRefGoogle Scholar
  9. 9.
    Knezetic, J., and Felsenfeld, G. (1989) Mol. Cell. Biol., 9, 893–901.PubMedGoogle Scholar
  10. 10.
    Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F., and de Laat, W. (2002) Mol. Cell, 10, 1453–1465.PubMedCrossRefGoogle Scholar
  11. 11.
    Vakoc, C. R., Letting, D. L., Gheldof, N., Sawado, T., Bender, M. A., Groudine, M., Weiss, M. J., Dekker, J., and Blobel, G. A. (2005) Mol. Cell, 17, 453–462.PubMedCrossRefGoogle Scholar
  12. 12.
    Gribnau, J., de Boer, E., Trimborn, T., Wijgerde, M., Milot, E., Grosveld, F., and Fraser, P. (1998) EMBO J., 17, 6020–6027.PubMedCrossRefGoogle Scholar
  13. 13.
    Wijgerde, M., Grosveld, F., and Fraser, P. (1995) Nature, 377, 209–213.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou, G. L., Xin, L., Song, W., Di, L. J., Liu, G., Wu, X. S., Liu, D. P., and Liang, C. C. (2006) Mol. Cell. Biol., 26, 5096–5105.PubMedCrossRefGoogle Scholar
  15. 15.
    De Moura Gallo, C. V., Vassetzky, Y. S., Huesca, M., and Scherrer, K. (1992) Biochem. Biophys. Res. Commun., 184, 1181–1189.CrossRefGoogle Scholar
  16. 16.
    Razin, S. V., de Moura Gallo, C. V., and Scherrer, K. (1994) Mol. Gen. Genet., 242, 649–652.PubMedCrossRefGoogle Scholar
  17. 17.
    Valadez-Graham, V., Razin, S. V., and Recillas-Targa, F. (2004) Nucleic Acids Res., 32, 1354–1362.PubMedCrossRefGoogle Scholar
  18. 18.
    Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002) Science, 295, 1306–1311.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, Z., and Garrard, W. T. (2005) Mol. Cell. Biol., 25, 3220–3231.PubMedCrossRefGoogle Scholar
  20. 20.
    Splinter, E., Grosveld, F., and de Laat, W. (2004) Meth. Enzymol., 375, 493–507.PubMedCrossRefGoogle Scholar
  21. 21.
    Bruns, G. A., and Ingram, V. M. (1973) Dev. Biol., 30, 455–459.PubMedCrossRefGoogle Scholar
  22. 22.
    Weintraub, H., Larsen, A., and Groudine, M. (1981) Cell, 24, 333–344.PubMedCrossRefGoogle Scholar
  23. 23.
    Singal, R., van Wert, J. M., and Ferdinand, L., Jr. (2002) Blood, 100, 4217–4222.PubMedCrossRefGoogle Scholar
  24. 24.
    Klochkov, D., Rincon-Arano, H., Ioudinkova, E. S., Valadez-Graham, V., Gavrilov, A., Recillas-Targa, F., and Razin, S. V. (2006) Mol. Cell. Biol., 26, 1589–1597.PubMedCrossRefGoogle Scholar
  25. 25.
    Razin, S. V., Kekelidze, M. G., Lukanidin, E. M., Scherrer, K., and Georgiev, G. P. (1986) Nucleic Acids Res., 14, 8189–8207.PubMedCrossRefGoogle Scholar
  26. 26.
    Verbovaia, L., and Razin, S. V. (1995) Gene, 166, 255–259.PubMedCrossRefGoogle Scholar
  27. 27.
    Tufarelli, C., Hardison, R., Miller, W., Hughes, J., Clark, K., Ventress, N., Frischauf, A. M., and Higgs, D. R. (2004) Genome Res., 14, 623–630.PubMedCrossRefGoogle Scholar
  28. 28.
    Hughes, J. R., Cheng, J. F., Ventress, N., Prabhakar, S., Clark, K., Anguita, E., de Gobbi, M., de Jong, P., Rubin, E., and Higgs, D. R. (2005) Proc. Natl. Acad. Sci. USA, 102, 9830–9835.PubMedCrossRefGoogle Scholar
  29. 29.
    Palstra, 0R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003) Nat. Genet., 35, 190–194.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations