Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 10, pp 1146–1153 | Cite as

Calcium uptake in rat liver mitochondria accompanied by activation of ATP-dependent potassium channel

  • O. V. AkopovaEmail author
  • V. I. Nosar
  • I. N. Mankovskaya
  • V. F. Sagach
Article

Abstract

The influence of potassium ions on calcium uptake in rat liver mitochondria is studied. It is shown that an increase in K+ and Ca2+ concentrations in the incubation medium leads to a decrease in calcium uptake in mitochondria together with a simultaneous increase in potassium uptake due to the potential-dependent transport of K+ in the mito-chondrial matrix. Both effects are more pronounced in the presence of an ATP-dependent K+-channel (K ATP + -channel) opener, diazoxide (Dz). Activation of the K ATP + -channel by Dz alters the functional state of mitochondria and leads to an increase in the respiration rate in state 2 and a decrease in the oxygen uptake and the rate of ATP synthesis in state 3. The effect of Dz on oxygen consumption in state 3 is mimicked by valinomycin, but it is opposite to that of the classical protonophore uncoupler CCCP. It is concluded that the potential-dependent uptake of potassium is closely coupled to calcium transport and is an important parameter of energy coupling responsible for complex changes in oxygen consumption and Ca2+-transport properties of mitochondria.

Key words

ATP-dependent K+-channels mitochondria potassium calcium transport oxygen consumption diazoxide 

Abbreviations

CCCP

carbonyl cyanide m-chlorophenylhydra-zone

Dz

diazoxide

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kroemer, G., and Reed, J. C. (2000) Nature Med., 6, 513–519.PubMedCrossRefGoogle Scholar
  2. 2.
    Skulachev, V. P. (1999) Mol. Aspects Med., 20, 139–184.PubMedCrossRefGoogle Scholar
  3. 3.
    Duchen, M. (2000) J. Physiol., 529, 57–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernardi, P. (1999) Physiol. Rev., 79, 1127–1155.PubMedGoogle Scholar
  5. 5.
    O’Rourke, B. (2000) J. Physiol., 529, 23–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Mironova, G. D., Skarga, Yu. Yu., Grigoriev, S. M., Negoda, A. E., Kolomytkin, O. V., and Marinov, B. S. (1999) J. Bioenerg. Biomembr., 31, 157–161.CrossRefGoogle Scholar
  7. 7.
    Inoue, I., Nagase, H., Kishi, K., and Higuti, T. (1991) Nature, 352, 244–247.PubMedCrossRefGoogle Scholar
  8. 8.
    Dzeja, P. P., Holmuhamedov, E. L., Ozcan, C., Pucar, D., Jahangir, A., and Terzic, A. (2001) Circ. Res., 89, 744–746.PubMedGoogle Scholar
  9. 9.
    Facundo, H. T., Fornazari, M., and Kowaltowski, A. J. (2006) Biochim. Biophys. Acta, 1762, 202–212.PubMedGoogle Scholar
  10. 10.
    Fryer, R. M., Eells, J. T., Hsu, A. K., Henry, M. M., and Gross, G. J. (2000) Am. J. Physiol., 278, H305–H312.Google Scholar
  11. 11.
    Weiss, J. N., Korge, P., Honda, H. M., and Ping, P. (2003) Circ. Res., 93, 292–301.PubMedCrossRefGoogle Scholar
  12. 12.
    Costa, A. D. T., Quinlan, C. L., and Andruchiv, A., West, I. C., Jaburek, M., and Garlid, K. D. (2006) Am. J. Physiol., 290, H406–H415.Google Scholar
  13. 13.
    Murata, M., Akao, M., O’Rourke, B., and Marban, E. (2001) Circ. Res., 89, 891–898.PubMedCrossRefGoogle Scholar
  14. 14.
    Holmuhamedov, E. L., Jovanovic, S., Dzeja, P., Jovanovic, A., and Terzic, A. (1998) Am. J. Physiol., 275, H1567–H1576.PubMedGoogle Scholar
  15. 15.
    Czyz, A., Szewczyk, A., Nalecz, M. J., and Wojtczak, L. (1995) Biochem. Biophys. Res. Commun., 210, 98–104.PubMedCrossRefGoogle Scholar
  16. 16.
    Cancherini, D. V., Trabuco, L. G., Reboucas, N. A., and Kowaltowski, A. J. (2003) Am. J. Physiol., 285, F1291–F1296.Google Scholar
  17. 17.
    Holmuhamedov, E. L., Wang, L., and Terzic, A. (1999) J. Physiol., 519, 347–360.PubMedCrossRefGoogle Scholar
  18. 18.
    Katoh, H., Nishigaki, N., and Hayashi, H. (2002) Circulation, 105, 2666–2671.PubMedCrossRefGoogle Scholar
  19. 19.
    Jaburek, M., Yarov-Yarovoy, V., Paucek, P., and Garlid, K. D. (1998) J. Biol. Chem., 273, 13578–13582.PubMedGoogle Scholar
  20. 20.
    Tedeschi, H. (1959) J. Biophys. Biochem. Cytol., 6, 241–252.PubMedCrossRefGoogle Scholar
  21. 21.
    Brinley, F. J., and Scarpa, A. (1975) FEBS Lett., 50, 82–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Garlid, K. D., and Beavis, A. D. (1985) J. Biol. Chem., 260, 13434–13441.PubMedGoogle Scholar
  23. 23.
    Beavis, A. D., Lu, Y., and Garlid, K. D. (1993) J. Biol. Chem., 268, 997–1004.PubMedGoogle Scholar
  24. 24.
    Kotyk, A., and Yanachek, K. (1980) Membrane Transport [Russian translation], Mir, Moscow.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • O. V. Akopova
    • 1
    Email author
  • V. I. Nosar
    • 1
  • I. N. Mankovskaya
    • 1
  • V. F. Sagach
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations