Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 10, pp 1085–1095 | Cite as

Mutants of monomeric red fluorescent protein mRFP1 at residue 66: Structure modeling by molecular dynamics and search for correlations with spectral properties

  • E. E. Khrameeva
  • V. L. Drutsa
  • E. P. Vrzheshch
  • D. V. Dmitrienko
  • P. V. VrzheshchEmail author
Article

Abstract

To study the interrelation between the spectral and structural properties of fluorescent proteins, structures of mutants of monomeric red fluorescent protein mRFP1 with all possible point mutations of Glu66 (except replacement by Pro) were simulated by molecular dynamics. A global search for correlations between geometrical structure parameters and some spectral characteristics (absorption maximum wavelength, integral extinction coefficient at the absorption maximum, excitation maximum wavelength, emission maximum wavelength, and quantum yield) was performed for the chromophore and its 6 environment in mRFP1, Q66A, Q66L, Q66S, Q66C, Q66H, and Q66N. The correlation coefficients (0.81–0.87) were maximal for torsion angles in phenolic and imidazolidine rings as well as for torsion angles in the regions of connection between these rings and chromophore attachment to β-barrel. The data can be used to predict the spectral properties of fluorescent proteins based on their structures and to reveal promising positions for directed mutagenesis.

Key words

fluorescent proteins mRFP1 mutants at residue 66 spectral characteristics structure correlations molecular dynamics 

Abbreviations

DsRed

red fluorescent protein drFP583 from coral Discosoma sp.

GFP

green fluorescent protein from Aequorea victoria

MD

molecular dynamics

mRFP1

monomeric red fluorescent protein, mutant of DsRed

Q66X

mutants of mRFP1 with replacement of residue 66 by residue X

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsien, R. Y. (1998) Annu. Rev. Biochem., 67, 509–544.PubMedCrossRefGoogle Scholar
  2. 2.
    Verkhusha, V. V., Akovbian, N. A., Efremenko, E. N., Varfolomeyev, S. D., and Vrzheshch, P. V. (2001) Biochemistry (Moscow), 66, 1342–1351.CrossRefGoogle Scholar
  3. 3.
    Vrzheshch, P. V., Akovbian, N. A., Varfolomeyev, S. D., and Verkhusha, V. V. (2000) FEBS Lett., 29, 203–208.CrossRefGoogle Scholar
  4. 4.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Nature, 28, 882–887.Google Scholar
  5. 5.
    Romoser, V. A., Hinkle, P. M., and Persechini, A. (1997) J. Biol. Chem., 16, 13270–13274.CrossRefGoogle Scholar
  6. 6.
    Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A. V., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I., and Siebert, P. (2000) Science, 290, 1585–1588.PubMedCrossRefGoogle Scholar
  7. 7.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Nat. Biotechnol., 22, 1567–1572.PubMedCrossRefGoogle Scholar
  8. 8.
    Jung, G., Wiehler, J., and Zumbusch, A. (2005) Biophys. J., 88, 1932–1947.PubMedCrossRefGoogle Scholar
  9. 9.
    Weber, W., Helms, V., McCammon, J. A., and Langhoff, P. W. (1999) Proc. Natl. Acad. Sci. USA, 25, 6177–6182.CrossRefGoogle Scholar
  10. 10.
    Reuter, N., Lin, H., and Thiel, W. (2002) J. Phys. Chem. B, 106, 6310–6321.CrossRefGoogle Scholar
  11. 11.
    Heim, R., Cubitt, A., and Tsien, R. Y. (1995) Nature, 23, 663–664.CrossRefGoogle Scholar
  12. 12.
    Shimomura, O., Johnson, F. H., and Saiga, Y. (1962) J. Cell. Comp. Physiol., 59, 223–239.PubMedCrossRefGoogle Scholar
  13. 13.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Gene, 111, 229–233.PubMedCrossRefGoogle Scholar
  14. 14.
    Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., and Lukyanov, S. A. (1999) Nature Biotech., 17, 969–973.CrossRefGoogle Scholar
  15. 15.
    Zhang, J., Campbell, R. E., Ting, A. Y., and Tsien, R. Y. (2002) Nature Rev. Mol. Cell Biol., 3, 906–918.CrossRefGoogle Scholar
  16. 16.
    Zubova, N. N., Bulavina, A. Yu., and Savitsky, A. P. (2003) Uspekhi Biol. Khim., 43, 163–224.Google Scholar
  17. 17.
    Lindahl, E., Hess, B., and van der Spoel, D. (2001) J. Mol. Model., 7, 306–317.Google Scholar
  18. 18.
    Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. C. (2005) J. Comput. Chem., 26, 1701–1718.CrossRefGoogle Scholar
  19. 19.
    Dmitrienko, D. V., Vrzheshch, E. P., Drutsa, V. L., and Vrzheshch, P. V. (2006) Biochemistry (Moscow), 71, 1133–1152.CrossRefGoogle Scholar
  20. 20.
    Van der Spoel, D., Lindahl, E., Hess, B., van Buuren, A. R., Apol, E., Meulenhoff, P. J., Tieleman, D. P., Sijbers, A. L. T. M., Feenstra, K. A., van Drunen, R., and Berendsen, H. J. C. (2004) www.gromacs.org, Gromacs User Manual version 3.2.
  21. 21.
    Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) J. Mol. Biol., 112, 535–542.PubMedCrossRefGoogle Scholar
  22. 22.
    Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., and Zardecki, C. (2002) Acta Crystallogr. D, 58, 899–907.PubMedCrossRefGoogle Scholar
  23. 23.
    Tubbs, J. L., Tainer, J. A., and Getzoff, E. D. (2005) Biochemistry, 44, 9833–9840.PubMedCrossRefGoogle Scholar
  24. 24.
    Guex, N., and Peitsch, M. C. (1997) Electrophoresis, 18, 2714–2723.PubMedCrossRefGoogle Scholar
  25. 25.
    Berendsen, H. J. C., van der Spoel, D., and van Drunen, R. (1995) Comp. Phys. Comm., 91, 43–56.CrossRefGoogle Scholar
  26. 26.
    Berendsen, H. J. C., Postma, J. P. M., DiNola, A., and Haak, J. R. (1984) J. Chem. Phys., 81, 3684–3690.CrossRefGoogle Scholar
  27. 27.
    Drutsa, V. L., Kaberdin, V. R., Koroleva, O. N., and Shilov, I. A. (1991) Bioorg. Khim., 17, 1487–1493.PubMedGoogle Scholar
  28. 28.
    Fletcher, A. N. (1969) Photochem. Photobiol., 9, 439–444.PubMedCrossRefGoogle Scholar
  29. 29.
    Kubin, R. F., and Fletcher, A. N. (1982) J. Luminescence, 27, 455–462.CrossRefGoogle Scholar
  30. 30.
    Zamyatin, A. A. (1972) Progr. Biophys. Mol. Biol., 24, 107–123.CrossRefGoogle Scholar
  31. 31.
    Chen, M. C., Lambert, C. R., Urgitis, J. D., and Zimmer, M. (2001) Chem. Phys., 270, 157–164.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • E. E. Khrameeva
    • 1
  • V. L. Drutsa
    • 2
  • E. P. Vrzheshch
    • 1
  • D. V. Dmitrienko
    • 3
  • P. V. Vrzheshch
    • 1
    • 3
    Email author
  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.International Biotechnological CenterLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations