Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 10, pp 1076–1084 | Cite as

Reactive oxygen species in programmed death of pea guard cells

  • V. D. SamuilovEmail author
  • D. B. Kiselevsky
  • A. A. Shestak
  • A. V. Nesov
  • L. A. Vasil’ev
Article

Abstract

Hydrogen peroxide potentiates CN-induced apoptosis of guard cells recorded as destruction of cell nuclei in the epidermis from pea leaves. A still stronger effect was exerted by the addition of H2O2 and NADH, which are the substrates of the plant cell wall peroxidase producing \( O_2^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } } \) coupled to the oxidation of NADH. The CN-or (CN + H2O2)-induced destruction of guard cell nuclei was completely removed by nitroblue tetrazolium (NBT) oxidizing \( O_2^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } } \) and preventing there-by the subsequent generation of H2O2. The reduced NBT was deposited in the cells as formazan crystals. Cyanide-induced apoptosis was diminished by mannitol and ethanol, which are OH· traps. The dyes Rose Bengal (RB) and tetramethylrhodamine ethyl ester (TMRE) photosensitizing singlet oxygen production suppressed the CN-induced destruction of the cell nuclei in the light. This suppression was removed by exogenous NADH, which reacts with 1O2 yielding \( O_2^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } } \). Incubation of leaf slices with RB in the light lowered the photosynthetic O2 evolution rate and induced the permeability of guard cells for propidium iodide, which cannot pass across intact membranes. Inhibition of photosynthetic O2 evolution by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea or bromoxynil prevented CN-induced apoptosis of guard cells in the light but not in the dark. RB in combination with exogenous NADH caused H2O2 production that was sensitive to NBT and estimated from dichlorofluorescein (DCF) fluorescence. Data on NBT reduction and DCF and TMRE fluorescence obtained using a confocal microscope and data on the NADH-dependent H2O2 production are indicative of generation of reactive oxygen species in the chloroplasts, mitochondria, and nuclear region of guard cells as well as with participation of apoplastic peroxidase. Cyanide inhibited generation of reactive oxygen species in mitochondria and induced their generation in chloroplasts. The results show that H2O2, OH·, and \( O_2^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } } \) resources utilized for H2O2 production are involved in apoptosis of guard cells. It is likely that singlet oxygen generated by RB in the light, judging from the permeability of the plasmatic membrane for propidium iodide, makes Photosystem II of chloroplasts inoperative and induces necrosis of the guard cells.

Key words

programmed cell death reactive oxygen species chloroplasts mitochondria cell nucleus apoplastic peroxidase Pisum sativum L. 

Abbreviations

CCCP

carbonyl cyanide m-chlorophenylhydra-zone

DCF

2′,7′-dichlorofluorescein

DCFH-DA

2′,7′-dichlorofluorescin diacetate

DCMU

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

DPI

diphenyleneiodonium

NBT

nitroblue tetrazolium

PCD

programmed cell death

RB

Rose Bengal

ROS

reactive oxygen species

SOD

superoxide dismutase

TMRE

tetramethylrhodamine ethyl ester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2008_39_MOESM1_ESM.pdf (129 kb)
Supplementary material, approximately 340 KB.

References

  1. 1.
    Wang, H., Li, J., Bostock, R. M., and Gilchrist, D. G. (1996) Plant Cell, 8, 375–391.PubMedCrossRefGoogle Scholar
  2. 2.
    Ryerson, D. E., and Heath, M. C. (1996) Plant Cell, 8, 393–402.PubMedCrossRefGoogle Scholar
  3. 3.
    Samuilov, V. D., Lagunova, E. M., Beshta, O. E., and Kitashov, A. V. (2000) Biochemistry (Moscow), 65, 696–702.Google Scholar
  4. 4.
    Bakeeva, L. E., Dzyubinskaya, E. V., and Samuilov, V. D. (2005) Biochemistry (Moscow), 70, 972–979.CrossRefGoogle Scholar
  5. 5.
    Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, D. S., Kiselevsky, D. B., and Makarova, Ya. V. (2002) Biochemistry (Moscow), 67, 627–634.CrossRefGoogle Scholar
  6. 6.
    Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Ya. V., and Gusev, M. V. (2003) Biosci. Rep., 23, 103–117.PubMedCrossRefGoogle Scholar
  7. 7.
    Dzyubinskaya, E. V., Kiselevsky, D. B., Bakeeva, L. E., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 395–405.CrossRefGoogle Scholar
  8. 8.
    Demmig-Adams, B. (1990) Biochim. Biophys. Acta, 1020, 1–24.CrossRefGoogle Scholar
  9. 9.
    Koppenol, W. H. (1994) in Free Radical Damage and Its Control (Rice-Evans, C. A., and Burdon, R. H., eds.) Elsevier Sci. B. V., pp. 3–24.Google Scholar
  10. 10.
    Sies, H. (1993) Eur. J. Biochem., 215, 213–219.PubMedCrossRefGoogle Scholar
  11. 11.
    Skulachev, V. P. (2006) Apoptosis, 11, 473–485.PubMedCrossRefGoogle Scholar
  12. 12.
    Maxwell, D. P., Wang, Y., and McIntosh, L. (1999) Proc. Natl. Acad. Sci. USA, 96, 8271–8276.PubMedCrossRefGoogle Scholar
  13. 13.
    Umbach, A. L., Ng, V. S., and Siedow, J. N. (2006) Biochim. Biophys. Acta, 1757, 135–142.PubMedCrossRefGoogle Scholar
  14. 14.
    Wagner, A. M. (1995) FEBS Lett., 368, 339–342.PubMedCrossRefGoogle Scholar
  15. 15.
    Rasmusson, A. G., Soole, K. L., and Elthon, T. E. (2004) Annu. Rev. Plant Biol., 55, 23–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., and Nesov, A. V. (2006) Biochemistry (Moscow), 71, 384–394.CrossRefGoogle Scholar
  17. 17.
    Asada, K. (2000) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 355, 1419–1431.PubMedCrossRefGoogle Scholar
  18. 18.
    Asada, K. (1999) Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601–639.PubMedCrossRefGoogle Scholar
  19. 19.
    Cross, A. R., and Segal, A. W. (2004) Biochim. Biophys. Acta, 1657, 1–22.PubMedGoogle Scholar
  20. 20.
    Lambeth, J. D. (2004) Nature Rev. Immunol., 4, 181–188.CrossRefGoogle Scholar
  21. 21.
    Papadakis, A. K., and Roubelakis-Angelakis, K. A. (1999) Plant Physiol., 121, 197–205.PubMedCrossRefGoogle Scholar
  22. 22.
    Yokota, K., and Yamazaki, I. (1977) Biochemistry, 16, 1913–1920.PubMedCrossRefGoogle Scholar
  23. 23.
    Halliwell, B. (1978) Planta, 140, 81–88.CrossRefGoogle Scholar
  24. 24.
    Liszkay, A., Kenk, B., and Schopfer, P. (2003) Planta, 217, 658–667.PubMedCrossRefGoogle Scholar
  25. 25.
    Vianello, A., and Macri, F. (1991) J. Bioenerg. Biomembr., 23, 409–423.PubMedCrossRefGoogle Scholar
  26. 26.
    Gross, G. G., Janse, C., and Elstner, F. F. (1977) Planta, 136, 271–276.CrossRefGoogle Scholar
  27. 27.
    Karpinska, B., Karlsson, M., Schinkel, H., Streller, S., Suss, K. H., Melzer, M., and Wingsle, G. (2001) Plant Physiol., 126, 1668–1677.PubMedCrossRefGoogle Scholar
  28. 28.
    Karlsson, M., Melzer, M., Prokhorenko, I., Johansson, T., and Wingsle, G. (2005) J. Exp. Bot., 56, 2085–2093.PubMedCrossRefGoogle Scholar
  29. 29.
    Carter, C., and Thornburg, R. W. (2000) J. Biol. Chem., 275, 36726–36733.PubMedCrossRefGoogle Scholar
  30. 30.
    Carter, C., and Thornburg, R. W. (2004) Trends Plant Sci., 9, 320–324.PubMedCrossRefGoogle Scholar
  31. 31.
    LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Chem. Res. Toxicol., 5, 227–231.PubMedCrossRefGoogle Scholar
  32. 32.
    Auclair, C., and Voisin, E. (1985) in CRC Handbook of Methods for Oxygen Radical Research (Greewald, R. A., ed.) CRC Press, Boca Raton, Florida, pp. 123–132.Google Scholar
  33. 33.
    Goldstein, S., Michel, C., Bors, W., Saran, M., and Czapski, E. (1988) Free Rad. Biol. Med., 4, 295–303.PubMedCrossRefGoogle Scholar
  34. 34.
    Averyanov, A. A., and Lapikova, V. P. (1989) Biokhimiya, 54, 1646–1651.Google Scholar
  35. 35.
    Shen, B., Jensen, R. G., and Bohnert, H. J. (1997) Plant Physiol., 115, 527–532.PubMedGoogle Scholar
  36. 36.
    Giulivi, C., Boveris, A., and Cadenas, E. (1995) Arch. Biochem. Biophys., 316, 909–916.PubMedCrossRefGoogle Scholar
  37. 37.
    Okada, K., Ikeuchi, M., Yamamoto, N., Ono, T., and Miyao, M. (1996) Biochim. Biophys. Acta, 1274, 73–79.CrossRefGoogle Scholar
  38. 38.
    Sherstnev, M. P., Atanaev, T. B., and Vladimirov, Yu. A. (1989) Biofizika, 34, 684–687.PubMedGoogle Scholar
  39. 39.
    Zorov, D. B., Filburn, C. R., Klotz, L.-O., Zweier, J. J., and Sollot, S. J. (2000) J. Exp. Med., 192, 1001–1014.PubMedCrossRefGoogle Scholar
  40. 40.
    Ogata, M., Inanami, O., Nakajima, M., Nakajima, T., Hiraoka, W., and Kuwabara, M. (2003) Photochem. Photobiol., 78, 241–247.PubMedCrossRefGoogle Scholar
  41. 41.
    Petrat, F., Pindiur, S., Kirsch, M., and de Groot, H. (2003) J. Biol. Chem., 278, 3298–3307.PubMedCrossRefGoogle Scholar
  42. 42.
    Lin, W. (1982) Proc. Natl. Acad. Sci. USA, 79, 3773–3776.PubMedCrossRefGoogle Scholar
  43. 43.
    Gus’kova, R. A., Ivanov, I. I., Kol’tover, V. K., Akhobadze, V. V., and Rubin, A. B. (1984) Biochim. Biophys. Acta, 778, 579–585.PubMedCrossRefGoogle Scholar
  44. 44.
    Mao, G. D., and Poznansky, M. J. (1992) FEBS Lett., 305, 233–236.PubMedCrossRefGoogle Scholar
  45. 45.
    Korshunov, S. S., and Imlay, J. A. (2002) Mol. Microbiol., 43, 95–106.PubMedCrossRefGoogle Scholar
  46. 46.
    Madesh, M., and Hainoczky, G. (2001) J. Cell Biol., 155, 1003–1015.PubMedCrossRefGoogle Scholar
  47. 47.
    Bienert, G. P., Moller, A. L. B., Kristiansen, K. A., Schulz, A., Moller, I. M., Schjoerring, J. K., and Jahn, T. P. (2007) J. Biol. Chem., 282, 1183–1192.PubMedCrossRefGoogle Scholar
  48. 48.
    Samuilov, V. D., Lagunova, E. M., Gostimsky, S. A., Timofeev, K. N., and Gusev, M. V. (2003) Biochemistry (Moscow), 68, 912–917.CrossRefGoogle Scholar
  49. 49.
    Leist, M., Single, B., Castoldi, A. F., Kuhnle, S., and Nicotera, P. (1997) J. Exp. Med., 185, 1481–1486.PubMedCrossRefGoogle Scholar
  50. 50.
    Eguchi, Y., Shimizu, S., and Tsujimoto, Y. (1997) Cancer Res., 57, 1835–1840.PubMedGoogle Scholar
  51. 51.
    Clarke, P. G. H. (1990) Anat. Embryol., 181, 195–213.PubMedCrossRefGoogle Scholar
  52. 52.
    Sperandio, S., De Belle, I., and Bredesen, D. E. (2000) Proc. Natl. Acad. Sci. USA, 97, 14376–14381.PubMedCrossRefGoogle Scholar
  53. 53.
    Izyumov, D. S., Avetisyan, A. V., Pletyushkina, O. Yu., Sakharov, D. V., Wirtz, K. W., Chernyak, B. V., and Skulachev, V. P. (2004) Biochim. Biophys. Acta, 1658, 141–147.PubMedCrossRefGoogle Scholar
  54. 54.
    Dzyubinskaya, E. V., Kiselevsky, D. B., Lobysheva, N. V., Shestak, A. A., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 1120–1127.CrossRefGoogle Scholar
  55. 55.
    Furesan, C., Rutherford, A. W., and Krieger-Liszkay, A. (2002) FEBS Lett., 532, 407–410.CrossRefGoogle Scholar
  56. 56.
    Frahry, G., and Shopfer, P. (1998) Phytochemistry, 48, 223–227.PubMedCrossRefGoogle Scholar
  57. 57.
    Ramasarma, T., Swaroop, A., MacKellar, W., and Crane, F. L. (1981) J. Bioenerg. Biomembr., 13, 241–253.PubMedCrossRefGoogle Scholar
  58. 58.
    Allan, A. C., and Fluhr, R. (1997) Plant Cell, 9, 1559–1572.PubMedCrossRefGoogle Scholar
  59. 59.
    Bartoli, G. H., Galeotti, T., and Azzi, A. (1977) Biochim. Biophys. Acta, 492, 622–626.Google Scholar
  60. 60.
    Patton, S. E., Rosen, G. M., and Rauckman, E. J. (1980) Mol. Pharmacol., 18, 588–592.PubMedGoogle Scholar
  61. 61.
    Kuroda, J., Nakagawa, K., Yamasaki, T., Nakamura, K., Takeya, R., Kuribayashi, F., Imajoh-Ohmi, S., Igarashi, K., Shibata, Y., Sueishi, K., and Sumimoto, H. (2005) Genes to Cells, 10, 1139–1151.PubMedCrossRefGoogle Scholar
  62. 62.
    Peskin, A. V., Zoarsky, I. B., and Konstantinov, A. (1980) FEBS Lett., 117, 44–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Van Gestelen, P., Asard, H., and Caubergs, R. J. (1997) Plant Physiol., 115, 543–550.PubMedGoogle Scholar
  64. 64.
    Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Grinius, L. L., Il’ina, M. D., Mileykovskaya, E. I., Skulachev, V. P., and Tikhonova, G. V. (1972) Biochim. Biophys. Acta, 283, 442–455.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • V. D. Samuilov
    • 1
    Email author
  • D. B. Kiselevsky
    • 1
  • A. A. Shestak
    • 1
  • A. V. Nesov
    • 1
  • L. A. Vasil’ev
    • 1
  1. 1.Department of Physiology of Microorganisms, Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations