Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 10, pp 1063–1075 | Cite as

Oxygen as an alternative electron acceptor in the photosynthetic electron transport chain of C3 plants

  • I. V. Kuvykin
  • A. V. Vershubskii
  • V. V. Ptushenko
  • A. N. TikhonovEmail author
Article

Abstract

This study deals with effects of oxygen on the kinetics of P700 photoinduced redox transitions and on induction transients of chlorophyll fluorescence in leaves of C3 plants Hibiscus rosa-sinensis and Vicia faba. It is shown that the removal of oxygen from the leaf environment has a conspicuous effect on photosynthetic electron transport. Under anaerobic conditions, the concentration of oxidized P700 centers in continuous white light was substantially lower than under aerobic conditions. The deficiency of oxygen released non-photochemical quenching of chlorophyll fluorescence, thus indicating a decrease in the trans-thylakoid pH gradient (ΔpH). Quantitative analysis of experimental data within the framework of an original mathematical model has shown that the steady-state electron flux toward oxygen in Chinese hibiscus leaves makes up to ∼40% of the total electron flow passing through photosystem 1 (PS1). The decrease in P 700 + content under anaerobic conditions can be due to two causes: i) the retardation of electron outflow from PS1, and ii) the release of photosynthetic control (acceleration of electron flow from PS2 to P 700 + ) owing to lower acidification of the intra-thylakoid space. At the same time, cyclic electron transport around PS1 was not stimulated in the oxygen-free medium, although such stimulation seemed likely in view of possible rearrangement of electron flows on the acceptor side of PS1. This conclusion stems from observations that the rates of P 700 + reduction in DCMU-poisoned samples, both under aerobic and anaerobic conditions, were negligibly small compared to rates of electron flow from PS2 toward P 700 + in untreated samples.

Key words

C3 plants chloroplasts electron transport EPR non-photochemical fluorescence quenching mathematical modeling 

Abbreviations

DCMU

3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron)

EPR

electron paramagnetic resonance

Fd

ferredoxin

NDH

NAD(P)H-dehydrogenase

PAM

pulse amplitude modulated (fluorometry)

PS1 and PS2

photosystems 1 and 2

Q and QH2

oxidized and reduced plastoquinone forms, respectively

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bendall, D. S., and Manasse, R. S. (1995) Biochim. Biophys. Acta, 1229, 23–38.CrossRefGoogle Scholar
  2. 2.
    Allen, J. (2003) Trends Plant Sci., 8, 15–19.Google Scholar
  3. 3.
    Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T., Tasaka, M., and Shikanai, T. (2004) Nature, 429, 579–582.PubMedCrossRefGoogle Scholar
  4. 4.
    Joet, T., Cournac, L., Peltier, G., and Havaux, M. (2002) Plant Physiol., 128, 760–769.PubMedCrossRefGoogle Scholar
  5. 5.
    Joliot, P., and Joliot, A. (2002) Proc. Natl. Acad. Sci. USA, 99, 10209–10214.PubMedCrossRefGoogle Scholar
  6. 6.
    Joliot, P., and Joliot, A. (2005) Proc. Natl. Acad. Sci. USA, 102, 4913–4918.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson, G. N. (2005) J. Exp. Bot., 56, 407–416.PubMedCrossRefGoogle Scholar
  8. 8.
    Breyton, C., Nandha, B., Johnson, G., Joliot, P., and Finazzi, G. (2006) Biochemistry 45, 13465–13475.PubMedCrossRefGoogle Scholar
  9. 9.
    Golding, A. J., and Johnson, G. N. (2003) Planta, 218, 107–114.PubMedCrossRefGoogle Scholar
  10. 10.
    Talts, E., Oja, V., Ramma, H., Rasulov, B., Anijalg, A., and Laisk, A. (2007) Photosynth. Res., 94, 109–120.PubMedCrossRefGoogle Scholar
  11. 11.
    Mehler, A. H. (1951) Arch. Biochem. Biophys., 33, 65–77.CrossRefGoogle Scholar
  12. 12.
    Asada, K. (1999) Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601–639.PubMedCrossRefGoogle Scholar
  13. 13.
    Heber, U. (2002) Photosynth. Res., 73, 223–231.PubMedCrossRefGoogle Scholar
  14. 14.
    Peltier, G., and Cournac, L. (2002) Annu. Rev. Plant Biol., 53, 523–550.PubMedCrossRefGoogle Scholar
  15. 15.
    Badger, M. R., von Caemmerer, S., Ruuska, S., and Nakano, H. (2000) Philos. Trans. R. Soc. Lond. B, 355, 1433–1446.CrossRefGoogle Scholar
  16. 16.
    Backhausen, J. E., Kitzmann, C., Horton, P., and Scheibe, R. (2000) Photosynth. Res., 64, 1–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Foyer, C. H., and Noctor, G. (2000) J. Exp. Bot., 51, 15–19.Google Scholar
  18. 18.
    Allen, J., and Fosberg, J. (2001) Trends Plant Sci., 6, 317–326.PubMedCrossRefGoogle Scholar
  19. 19.
    Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (2003) Trends Plant Sci., 8, 27–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Kramer, D. M., Avenson, T. J., and Edwards, G. E. (2004) Trends Plant Sci., 9, 349–357.PubMedCrossRefGoogle Scholar
  21. 21.
    Ruuska, S. A., Badger, M. R., Andrews, T. J., and von Caemmerer, S. (2000) J. Exp. Bot., 51, 357–368.PubMedCrossRefGoogle Scholar
  22. 22.
    Sage, F. R., Cen, Y.-P., and Li, M. (2002) Photosynth. Res., 71, 241–250.PubMedCrossRefGoogle Scholar
  23. 23.
    Miyake, C., and Yokota, A. (2000) Plant Cell. Physiol., 41, 335–343.PubMedGoogle Scholar
  24. 24.
    Makino, A., Miyake, C., and Yokota, A. (2002) Plant Cell. Physiol., 43, 1017–1026.PubMedCrossRefGoogle Scholar
  25. 25.
    Osmond, C. B., and Grace, S. C. (1995) J. Exp. Bot., 46, 1351–1362.Google Scholar
  26. 26.
    Ziem-Hanck, U., and Heber, U. (1980) Biochim. Biophys. Acta, 591, 266–274.PubMedCrossRefGoogle Scholar
  27. 27.
    Ivanov, B., Kobayashi, Y., and Heber, U. (1998) Photosynth. Res., 57, 61–70.CrossRefGoogle Scholar
  28. 28.
    Cornic, G., and Briantais, J.-M. (1991) Planta, 183, 178–184.CrossRefGoogle Scholar
  29. 29.
    Vishnyakova, E. A., Trubitsin, B. V., and Tikhonov, A. N. (2000) Biofizika, 45, 899–904.Google Scholar
  30. 30.
    Chow, W. S., and Hope, A. B. (2002) Photosynth. Res., 81, 77–89.CrossRefGoogle Scholar
  31. 31.
    Joliot, P., and Joliot, A. (2006) Biochim. Biophys. Acta, 1757, 362–368.PubMedCrossRefGoogle Scholar
  32. 32.
    Maxwell, P. C., and Biggins, J. (1977) Biochim. Biophys. Acta, 459, 442–450.PubMedCrossRefGoogle Scholar
  33. 33.
    Trubitsin, B. V., Mamedov, M. D., Vitukhnovskaya, L. A., Semenov, A. Yu., and Tikhonov, A. N. (2003) FEBS Lett., 544, 15–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Trubitsin, B. V., Ptushenko, V. V., Koksharova, O. A., Mamedov, M. D., Vitukhnovskaya, L. A., Grigor’ev, I. A., Semenov, A. Yu., and Tikhonov, A. N. (2005) Biochim. Biophys. Acta, 1708, 238–249.PubMedCrossRefGoogle Scholar
  35. 35.
    Edwards, G. E., and Walker, D. A. (1983) C3, C4: Mechanisms and Cellular and Environmental Regulation of Photosynthesis, Blackwell Scientific, Oxford.Google Scholar
  36. 36.
    Allen, J. F. (1992) Biochim. Biophys. Acta, 1098, 275–335.PubMedGoogle Scholar
  37. 37.
    Rumberg, B., and Siggel, U. (1969) Naturwissenschaften, 56, 130–132.PubMedCrossRefGoogle Scholar
  38. 38.
    Stiehl, H. H., and Witt, H. T. (1969) Z. Naturforsch. Teil B, 24, 1588–1598.Google Scholar
  39. 39.
    Tikhonov, A. N., Khomutov, G. B., Ruuge, E. K., and Blumenfeld, L. A. (1981) Biochim. Biophys. Acta, 637, 321–333.CrossRefGoogle Scholar
  40. 40.
    Haehnel, W. (1984) Annu. Rev. Plant Physiol. Plant Mol. Biol., 35, 659–693.CrossRefGoogle Scholar
  41. 41.
    Blumenfeld, L. A., and Tikhonov, A. N. (1994) Biophysical Thermodynamics of Intracellular Processes. Molecular Machines of the Living Cell, Spinger Verlag, N. Y.Google Scholar
  42. 42.
    Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (1999) Photosynth. Res., 60, 151–163.CrossRefGoogle Scholar
  43. 43.
    Horton, P., Ruban, A. V., and Walters, R. G. (1996) Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 655–684.PubMedCrossRefGoogle Scholar
  44. 44.
    Niyogi, K. (1999) Ann. Rev. Plant Physiol. Plant Mol. Biol., 50, 333–359.CrossRefGoogle Scholar
  45. 45.
    Maxwell, K., and Johnson, G. N. (2000) J. Exp. Bot., 51, 659–668.PubMedCrossRefGoogle Scholar
  46. 46.
    Mueller, P., Li, X. P., and Niyogi, K. K. (2001) Plant Physiol., 125, 1558–1566.CrossRefGoogle Scholar
  47. 47.
    Niyogi, K. K., Li, X. P., Rosenberg, V., and Jung, H. S. (2004) J. Exp. Bot., 56, 375–382.PubMedCrossRefGoogle Scholar
  48. 48.
    Karapetyan, N. V. (2007) Biochemistry (Moscow), 72, 1127–1135.CrossRefGoogle Scholar
  49. 49.
    Rabinowitch, E. (1956) Photosynthesis, Vol. 3, Interscience Publishers, New York.Google Scholar
  50. 50.
    Webber, A. N., and Lubitz, W. (2001) Biochim. Biophys. Acta, 1507, 61–79.PubMedCrossRefGoogle Scholar
  51. 51.
    Heber, U., Neimanis, S., Siebke, K., Schonknecht, G., and Katona, E. (1992) Photosynth. Res., 34, 443–447.CrossRefGoogle Scholar
  52. 52.
    Savitsky, A., Trubitsin, B. V., Mobius, K., Semenov, A. Yu., and Tikhonov, A. N. (2007) Appl. Magn. Reson., 31, 221–236.CrossRefGoogle Scholar
  53. 53.
    Tagawa, K., Tsujimoto, H. Y., and Arnon, D. (1963) Nature, 199, 1247–1252.PubMedCrossRefGoogle Scholar
  54. 54.
    Kobayashi, Y., and Heber, U. (1994) Photosynth. Res., 41, 419–428.CrossRefGoogle Scholar
  55. 55.
    Lazar, D. (1999) Biochim. Biophys. Acta, 1412, 1–28.PubMedCrossRefGoogle Scholar
  56. 56.
    Khorobrykh, S. A., and Ivanov, B. N. (2002) Photosynth. Res., 71, 209–219.PubMedCrossRefGoogle Scholar
  57. 57.
    Toth, S. Z., Schansker, G., and Strasser, R. J. (2007) Photosynth. Res., 93, 193–203.PubMedCrossRefGoogle Scholar
  58. 58.
    Nandha, B., Finazzi, G., Joliot, P., Hald, S., and Johnson, G. N. (2007) Biochim. Biophys. Acta, 1767, 1252–1259.PubMedCrossRefGoogle Scholar
  59. 59.
    Karavaev, V. K., and Kukushkin, A. K. (1975) Biofizika, 20, 88–92.PubMedGoogle Scholar
  60. 60.
    Burrows, P. A., Sazanov, L. F., Svab, Z., Maliga, P., and Nixon, P. J. (1998) EMBO J., 17, 868–876.PubMedCrossRefGoogle Scholar
  61. 61.
    Kanazawa, A., and Kramer, D. M. (2002) Proc. Natl. Acad. Sci. USA, 99, 12789–12794.PubMedCrossRefGoogle Scholar
  62. 62.
    Avenson, T. J., Cruz, J. A., and Kramer, D. M. (2004) Proc. Natl. Acad. Sci. USA, 101, 5530–5535.PubMedCrossRefGoogle Scholar
  63. 63.
    Takizawa, K., Cruz, J. A., Kanazawa, A., and Kramer, D. M. (2007) Biochim. Biophys. Acta, 1767, 1233–1244.PubMedCrossRefGoogle Scholar
  64. 64.
    Vershubskii, A. V., Priklonskii, V. I., and Tikhonov, A. N. (2004) Biochemistry (Moscow), 69, 1016–1024.CrossRefGoogle Scholar
  65. 65.
    Vershubskii, A. V., Priklonskii, V. I., and Tikhonov, A. N. (2006) Fiz. Khim., 80, 552–559.Google Scholar
  66. 66.
    Vershubskii, A. V., Priklonskii, V. I., and Tikhonov, A. N. (2007) Khim. Fiz., 26, 54–64.Google Scholar
  67. 67.
    Dubinskii, A. Yu., and Tikhonov, A. N. (1994) Biofizika, 39, 652–665.Google Scholar
  68. 68.
    Dubinskii, A. Yu., and Tikhonov, A. N. (1995) Biofizika, 40, 365–371.Google Scholar
  69. 69.
    Frolov, A. E., and Tikhonov, A. N. (2007) Biofizika, 52, 656–666.PubMedGoogle Scholar
  70. 70.
    Ivanov, B. N. (2008) Biochemistry (Moscow), 73, 112–117.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • I. V. Kuvykin
    • 1
  • A. V. Vershubskii
    • 1
  • V. V. Ptushenko
    • 1
  • A. N. Tikhonov
    • 1
    Email author
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations