Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 9, pp 1042–1046 | Cite as

Interaction between DNA polymerase λ and RPA during translesion synthesis

  • Yu. S. Krasikova
  • E. A. Belousova
  • N. A. Lebedeva
  • P. E. Pestryakov
  • O. I. LavrikEmail author
Article

Abstract

Replication of damaged DNA (translesion synthesis, TLS) is realized by specialized DNA polymerases. Additional protein factors such as replication protein A (RPA) play important roles in this process. However, details of the interaction are unknown. Here we analyzed the influence of the hRPA and its mutant hABCD lacking domains responsible for protein-protein interactions on ability of DNA polymerase λ to catalyze TLS. The primer-template structures containing varying parts of extended strand (16 and 37 nt) were used as model systems imitating DNA intermediate of first stage of TLS. The 8-oxoguanine disposed in +1 position of the template strand in relation to 3′-end of primer was exploited as damage. It was shown that RPA stimulated TLS DNA synthesis catalyzed by DNA polymerase λ in its globular but not in extended conformation. Moreover, this effect is dependent on the presence of p70N and p32C domains in RPA molecule.

Key words

DNA replication translesion DNA synthesis DNA polymerase λ replication protein A 

Abbreviations

AP sites

apurinic/apyrimidinic sites

BER

base excision repair

nt

nucleotide

PCNA

proliferating cell nuclear antigen

RPA

replication protein A

TLS

translesion DNA synthesis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohmori, H., Friedberg, E. C., Fuchs, R. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., and Woodgate, R. (2001) Mol. Cell, 8, 7–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Garcia-Diaz, M., Bebenek, K., Sabariegos, R., Dominguez, O., Rodrigues, J., Kirchhoff, T., Garcia-Palomero, E., Picher, A. J., Juarez, R., Ruiz, J. F., Kunkel, T. A., and Blanco, L. (2002) J. Biol. Chem., 277, 13184–13191.PubMedCrossRefGoogle Scholar
  3. 3.
    Garcia-Diaz, M., Dominguez, O., Lopez-Fernandez, L. A., de Lera, L. T., Saniger, M. L., Ruiz, J. F., Parraga, M., Garcia-Ortiz, M. J., Kirchhoff, T., del Mazo, J., Bernard, A., and Blanco, L. (2000) J. Mol. Biol., 301, 851–867.PubMedCrossRefGoogle Scholar
  4. 4.
    Uchiyama, Y., Kimura, S., Yamamoto, T., Ishibashi, T., and Sakaguchi, K. (2004) Eur. J. Biochem., 271, 2799–2807.PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia-Diaz, M., Bebenek, K., Kunkel, T. A., and Blanco, L. (2001) J. Biol. Chem., 276, 34659–34663.PubMedCrossRefGoogle Scholar
  6. 6.
    Lebedeva, N. A., Rechkunova, N. I., Dezhurov, S. V., Khodyreva, S. N., Favre, A., Blanco, L., and Lavrik, O. I. (2005) Biochim. Biophys. Acta, 1751, 150–158.PubMedGoogle Scholar
  7. 7.
    Ma, Y., Lu, H., Tippin, B., Goodman, M. F., Shimazaki, N., Koiwai, O., Hsieh, C. L., Schwarz, K., and Lieber, M. R. (2004) Mol. Cell, 16, 701–713.PubMedCrossRefGoogle Scholar
  8. 8.
    Maga, G., Villani, G., Ramadan, K., Shevelev, I., le Gac, N. T., Blanco, L., Blanca, G., Spadari, S., and Hubscher, U. (2002) J. Biol. Chem., 277, 48434–48440.PubMedCrossRefGoogle Scholar
  9. 9.
    Maga, G., Villani, G., Crespan, E., Wimmer, U., Ferrari, E., Bertocci, B., and Hubscher, U. (2007) Nature, 447, 606–608.PubMedCrossRefGoogle Scholar
  10. 10.
    Crespan, E., Hubscher, U., and Maga, G. (2007) Nucleic Acids Res., 35, 5173–5181.PubMedCrossRefGoogle Scholar
  11. 11.
    Maga, G., Shevelev, I., Villani, G., Spadari, S., and Hubscher, U. (2006) Nucleic Acids Res., 34, 1405–1415.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimazaki, N., Yazaki, T., Kubota, T., Sato, A., Nakamura, A., Kurei, S., Toji, S., Tamai, K., and Koiwai, O. (2005) Genes Cells, 10, 705–715.PubMedCrossRefGoogle Scholar
  13. 13.
    Wold, M. S. (1997) Annu. Rev. Biochem., 66, 61–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Singh, K. K., and Samson, L. (1995) Proc. Natl. Acad. Sci. USA, 92, 4907–4911.PubMedCrossRefGoogle Scholar
  15. 15.
    De Laat, W. L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N. G., and Hoeijmakers, J. H. (1998) Genes Dev., 12, 2598–2609.PubMedCrossRefGoogle Scholar
  16. 16.
    Nagelhus, T. A., Haug, T., Singh, K. K., Keshav, K. F., Skorpen, F., Otterlei, M., Bharati, S., Lindmo, T., Benichou, S., Benarous, R., and Krokan, H. E. (1997) J. Biol. Chem., 272, 6561–6566.PubMedCrossRefGoogle Scholar
  17. 17.
    Lin, Y. L., Shivji, M. K., Chen, C., Kolodner, R., Wood, R. D., and Dutta, A. (1998) J. Biol. Chem., 273, 1453–1461.PubMedCrossRefGoogle Scholar
  18. 18.
    Perrault, R., Cheong, N., Wang, H., Wang, H., and Iliakis, G. (2001) Int. J. Radiat. Biol., 77, 593–607.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim, C., Snyder, R. O., and Wold, M. S. (1992) Mol. Cell. Biol., 12, 3050–3059.PubMedGoogle Scholar
  20. 20.
    Weisshart, K., Pestryakov, P., Smith, R. W., Hartmann, H., Kremmer, E., Lavrik, O., and Nasheuer, H. P. (2004) J. Biol. Chem., 279, 35368–35376.PubMedCrossRefGoogle Scholar
  21. 21.
    Iftode, C., Daniely, Y., and Borowiec, J. A. (1999) Crit. Rev. Biochem. Mol. Biol., 34, 141–180.PubMedCrossRefGoogle Scholar
  22. 22.
    Braithwaite, E. K., Prasad, R., Shock, D. D., Hou, E. W., Beard, W. A., and Wilson, S. H. (2005) J. Biol. Chem., 280, 18469–18475.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamshchikov, V. F. (1990) in Methods of Molecular Genetics and Gene Engineering (Salganik, R. I., ed.) Nauka, Novosibirsk, p. 28.Google Scholar
  24. 24.
    Yamshchikov, V. F. (1990) in Methods of Molecular Genetics and Gene Engineering (Salganik, R. I., ed.) Nauka, Novosibirsk, pp. 145–154.Google Scholar
  25. 25.
    Shibutani, S., Takeshita, M., and Grollman, A. P. (1991) Nature, 349, 431–434.PubMedCrossRefGoogle Scholar
  26. 26.
    Pestryakov, P. E., Khlimankov, D. Y., Bochkareva, E., Bochkarev, A., and Lavrik, O. I. (2004) Nucleic Acids Res., 32, 1894–1903.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • Yu. S. Krasikova
    • 1
    • 2
  • E. A. Belousova
    • 1
  • N. A. Lebedeva
    • 1
    • 2
  • P. E. Pestryakov
    • 1
  • O. I. Lavrik
    • 1
    • 2
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations