Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 9, pp 985–989 | Cite as

Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilization of polyphosphates as phosphate reserve

  • L. P. LichkoEmail author
  • T. V. Kulakovskaya
  • E. V. Kulakovskaya
  • I. S. Kulaev
Accelerated Publication

Abstract

Cytosol polyphosphates (polyPs) are the main phosphate (Pi) reserve in the yeast Saccharomyces cerevisiae. In this work, the participation of cytosol polyPs and exopolyphosphatases in maintenance of Pi homeostasis under Pi deficit in the cultivation medium has been studied in different strains of S. cerevisiae. The growth of yeast strains with inactivated genes PPX1 and PPN1 encoding the yeast exopolyphosphatases and a strain with double mutations in these genes in a Pi-deficient medium is not disturbed. All the studied strains are able to maintain relatively constant Pi levels in the cytosol. In Pi-deficient medium, polyP hydrolysis in the cytosol of the parent and PPN1-deficient strains seems to be performed by exopolyphosphatase Ppx1 and proceeds without any change of the spectrum of polyP chain lengths. In the PPX1-deficient strain, long-chain polyPs are depleted first, and only then short-chain polyPs are hydrolyzed. In the double PPX1 and PPN1 mutant having low exopolyphosphatase activity, polyP hydrolysis in the cytosol starts with a notable delay, and about 20% of short-chain polyPs still remain after the polyP hydrolysis in other strains has almost been completed. This fact suggests that S. cerevisiae possesses a system, which makes it possible to compensate for inactivation of the PPX1 and PPN1 genes encoding exopolyphosphatases of the yeast cells.

Key words

Pi depletion inorganic polyphosphates exopolyphosphatase cytosol PPX1 and PPN1 mutants Saccharomyces cerevisiae 

Abbreviations

Pi

phosphate

polyPs

polyphosphates

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kulaev, I. S. (1979) The Biochemistry of Inorganic Polyphosphates, Wiley, New York.Google Scholar
  2. 2.
    Reusch, R. N. (1992) FEMS Rev., 103, 119–130.Google Scholar
  3. 3.
    Kornberg, A., Rao, N., and Ault-Riche, D. (1999) Ann. Rev. Biochem., 68, 89–125.PubMedCrossRefGoogle Scholar
  4. 4.
    Kulaev, I. S., Vagabov, V. M., and Kulakovskaya, T. V. (2004) The Biochemistry of Inorganic Polyphosphates, Wiley, New York.Google Scholar
  5. 5.
    Liss, E., and Langen, P. (1962) Arch. Microbiol., 41, 383–392.Google Scholar
  6. 6.
    Kulaev, I. S., and Vagabov, V. M. (1983) Adv. Microbiol. Physiol., 24, 83–171.CrossRefGoogle Scholar
  7. 7.
    Hofeler, H., Jensen, D., Pike, M. M., Delayre, J. L., Cirillo, V. P., Springer, C. S., Jr., Fossel, E. T., and Balschi, J. A. (1987) Biochemistry, 26, 4953–4962.PubMedCrossRefGoogle Scholar
  8. 8.
    Vagabov, V. M., Trilisenko, L. V., and Kulaev, I. S. (2000) Biochemistry (Moscow), 65, 349–354.Google Scholar
  9. 9.
    Persson, B. L., Lagerstedt, J. O., Pratt, J. R., Pattison-Granberg, J., Lundh, K., Shokrollahzadeh, S., and Lundh, F. (2003) Curr. Genet., 43, 225–244.PubMedCrossRefGoogle Scholar
  10. 10.
    Werner, T. P., Amhein, N., and Freimoser, F. M. (2005) Arch. Microbiol., 184, 129–136.PubMedCrossRefGoogle Scholar
  11. 11.
    Wurst, H., Shiba, T., and Kornberg, A. (1995) J. Bacteriol., 177, 898–906.PubMedGoogle Scholar
  12. 12.
    Kumble, K. D., and Kornberg, A. (1996) J. Biol. Chem., 271, 27146–27151.PubMedCrossRefGoogle Scholar
  13. 13.
    Sethuraman, A., Rao, N. N., and Kornberg, A. (2001) Proc. Natl. Acad. Sci. USA, 98, 8542–8547.PubMedCrossRefGoogle Scholar
  14. 14.
    Shi, X., and Kornberg, A. (2005) FEBS Lett., 579, 2014–2018.PubMedCrossRefGoogle Scholar
  15. 15.
    Ogawa, N., DeRisi, J., and Brown, P. O. (2000) Mol. Biol. Cell, 11, 4309–4321.PubMedGoogle Scholar
  16. 16.
    Andreeva, N. A., Kulakovskaya, T. V., and Kulaev, I. S. (2006) Biochemistry (Moscow), 71, 975–977.CrossRefGoogle Scholar
  17. 17.
    Lichko, L. P., Andreeva, N. A., Kulakovskaya, T. V., and Kulaev, I. S. (2003) FEMS Yeast Res., 3, 233–238.PubMedCrossRefGoogle Scholar
  18. 18.
    Lichko, L., Kulakovskaya, T., and Kulaev, I. (2002) Biochim. Biophys. Acta, 1599, 102–105.PubMedGoogle Scholar
  19. 19.
    Lichko, L. P., Kulakovskaya, T. V., and Kulaev, I. S. (2006) Biochemistry (Moscow), 71, 1171–1175.CrossRefGoogle Scholar
  20. 20.
    Lichko, L., Kulakovskaya, T., and Kulaev, I. (2004) Biochim. Biophys. Acta, 1674, 98–102.PubMedGoogle Scholar
  21. 21.
    Rubin, G. M. (1973) J. Biol. Chem., 11, 3860–3875.Google Scholar
  22. 22.
    Andreeva, N. A., Kulakovskaya, T. V., Karpov, A. V., Sidorov, I. A., and Kulaev, I. S. (1998) Yeast, 14, 383–390.PubMedCrossRefGoogle Scholar
  23. 23.
    Lichko, L., Kulakovskaya, T., and Kulaev, I. (2006) Yeast, 23, 735–740.PubMedCrossRefGoogle Scholar
  24. 24.
    Nesmeyanova, M. A. (2000) Biochemistry (Moscow), 65, 309–314.Google Scholar
  25. 25.
    Kortstee, J. J., Appeldoorn, K. J., Bonting, C. F. C., van Niel, E. W. J., and van Veen, H. W. (2000) Biochemistry (Moscow), 65, 332–340.Google Scholar
  26. 26.
    McGrath, J. W., Kulakova, A. N., Kulakov, L. A., and Quinn, J. P. (2005) Res. Microbiol., 156, 485–491.PubMedCrossRefGoogle Scholar
  27. 27.
    Baykov, A. A., Cooperman, B. S., Goldman, A., and Lahti, R. (1999) in Progress in Molecular and Subcellular Biology. Inorganic Polyphosphates. Biochemistry. Biology. Biotechnology, Vol. 23 (Schroder, H. C., and Muller, W. E. G., eds.) Springer-Verlag, Berlin-Heidelberg-New York, pp. 127–150.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • L. P. Lichko
    • 1
    Email author
  • T. V. Kulakovskaya
    • 1
  • E. V. Kulakovskaya
    • 1
  • I. S. Kulaev
    • 1
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations