Biochemistry (Moscow)

, Volume 73, Issue 9, pp 965–969 | Cite as

New findings in studies of cytochromes P450

  • K. N. MyasoedovaEmail author


Cytochromes P450 represent a numerous family of heme-containing enzymes belonging to the group of monooxygenases. In prokaryotes, cytochromes P450 usually perform a plastic function, whereas in eukaryotes their functions are very diverse. Mammalian cytochromes P450 are components of membranes and are involved in biosynthesis and metabolism of many physiologically active substances; moreover, these cytochromes are unique in their ability to catalyze biotransformation of xenobiotics, i.e. metabolize substances of foreign origin (drugs, toxins, environmental pollutants). The latter promotes elimination of xenobiotics, but sometimes intermediates of their metabolism are even more toxic and dangerous than the original xenobiotics per se. Some catalytic features of cytochromes P450 still need unambiguous explanation, i.e. broad substrate specificity, diversity of catalytic reactions, and unusual kinetics. Under some conditions cytochromes P450 can produce reactive oxygen species, and this is another problem attracting increasing attention. In this respect, a recent finding in mitochondria of analogs of microsomal cytochromes P450 seems especially intriguing; it was postulated that P450 can be responsible for mitochondrial dysfunction, cell apoptosis, and pathogenesis of some diseases. In this paper the present state of the art concerning these problems is considered.

Key words

cytochrome P450 endoplasmic reticulum mitochondria xenobiotics ligands conformation reactive oxygen species 



buthionine sulfoximine


cytochrome P450


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klingenberg, M. (1958) Arch. Biochem. Biophys., 75, 376–386.PubMedCrossRefGoogle Scholar
  2. 2.
    Garfinkel, D. (1958) Arch. Biochem. Biophys., 77, 493–509.PubMedCrossRefGoogle Scholar
  3. 3.
    Omura, T., and Sato, R. (1962) J. Biol. Chem., 237, 1375–1376.PubMedGoogle Scholar
  4. 4.
    Omura, T., and Sato, R. (1964) J. Biol. Chem., 239, 2370–2378.PubMedGoogle Scholar
  5. 5.
    Omura, T., Sato, R., Cooper, D. Y., Rosenthal, O., and Estabrook, R. W. (1965) Fed. Proc., 24, 1181–1189.PubMedGoogle Scholar
  6. 6.
    Nebert, D. W., Adesnik, M., Coon, M. J., Estabrook, R. W., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Kemper, W., Levin, W., Phillips, I. R., Sato, R., and Waterman, M. R. (1987) DNA (N. Y.), 6, 1–11.Google Scholar
  7. 7.
    Coon, M. J. (2002) J. Biol. Chem., 277, 28351–28363.PubMedCrossRefGoogle Scholar
  8. 8.
    Furge, L. L., and Guengerich, F. P. (2006) Biochem. Mol. Biol. Edu., 34, 66–74.CrossRefGoogle Scholar
  9. 9.
    Yao, H., McCullough, C. R., Costache, A. D., Pulella, P. K., and Sem, D. S. (2007) Proteins, 69, 125–138.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuprun, V. L., Myasoedova, K. N., Berndt, P., Sograf, O. N., Orlova, E. V., Chernyak, V. Ya., Archakov, A. I., and Skulachev, V. P. (1986) FEBS Lett., 205, 35–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Myasoedova, K. N., and Tsuprun, V. L. (1993) FEBS Lett., 325, 251–254.PubMedCrossRefGoogle Scholar
  12. 12.
    Myasoedova, K. N., and Stel’mashchuk, V. Ya. (2003) Dokl. Ros. Akad. Nauk, 393, 691–694.Google Scholar
  13. 13.
    Cosme, J., and Johnson, E. F. (2000) J. Biol. Chem., 275, 2545–2553.PubMedCrossRefGoogle Scholar
  14. 14.
    Williams, P.A., Cosme, J., Sridhar, V., Johnson, E. F., and McRee, D. E. (2000) Mol. Cell, 5, 121–131.PubMedCrossRefGoogle Scholar
  15. 15.
    Scott, E. E., He, Y. A., Wester, M. R., White, M. A., Chin, C. C., Halpert, J. R., Johnson, E. F., and Stout, C. D. (2003) Proc. Natl. Acad. Sci. USA, 100, 13196–13201.PubMedCrossRefGoogle Scholar
  16. 16.
    Wester, M. R., Yano, J. K., Schoch, G. A., Yang, C., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2004) J. Biol. Chem., 279, 35630–35637.PubMedCrossRefGoogle Scholar
  17. 17.
    Schoch, G. A., Yano, J. K., Wester, M. R., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2004) J. Biol. Chem., 279, 9497–9503.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams, P. A., Cosme, J., Vinkovic, D. M., Ward, A., Angove, H. C., Day, P. J., Vonrhein, C., Tickle, I. J., and Jhoti, H. (2004) Science, 305, 683–686.PubMedCrossRefGoogle Scholar
  19. 19.
    Yano, J. K., Wester, M. R., Schoch, G. A., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2004) J. Biol. Chem., 279, 38091–38094.PubMedCrossRefGoogle Scholar
  20. 20.
    Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2005) Nat. Struct. Mol. Biol., 12, 822–823.PubMedCrossRefGoogle Scholar
  21. 21.
    Rowland, P., Blaney, F. E., Smith, M. G., Jones, J. J., Leidon, V. R., Oxbrow, A. K., Lewis, C. J., Tennant, M. J., Modi, S., Egglton, D. S., Chenary, R. J., and Bridges, A. M. (2006) J. Biol. Chem., 281, 7614–7622.PubMedCrossRefGoogle Scholar
  22. 22.
    Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, C. C., and Kraut, J. (1985) J. Biol. Chem., 260, 16122–16124.PubMedGoogle Scholar
  23. 23.
    Poulos, T. L., Finzel, B. C., and Howard, A. I. (1986) Biochemistry, 25, 5314–5322.PubMedCrossRefGoogle Scholar
  24. 24.
    Ekroos, M., and Sjogren, T. (2006) Proc. Natl. Acad. Sci. USA, 103, 13682–13687.PubMedCrossRefGoogle Scholar
  25. 25.
    Guengerich, F. P. (2006) Proc. Natl. Acad. Sci. USA, 103, 13565–13566.PubMedCrossRefGoogle Scholar
  26. 26.
    Harlow, G. R., and Halpert, J. R. (1998) Proc. Natl. Acad. Sci. USA, 95, 6636–6641.PubMedCrossRefGoogle Scholar
  27. 27.
    Davidov, D. R., Halpert, J. R., Renaud, J. P., and Hui Bon Hoa, G. (2003) Biochem. Biophys. Res. Commun., 312, 121–130.CrossRefGoogle Scholar
  28. 28.
    Myasoedova, K. N., Arutyunyan, A. M., and Magretova, N. N. (2006) Biosci. Rep., 26, 69–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Myasoedova, K. N., Arutyunyan, A. M., and Magretova, N. N. (2007) Dokl. Ros. Akad. Nauk, 415, 262–267.Google Scholar
  30. 30.
    Scott, E. E., White, M. A., He, Y. A., Johnson, E. F., Stout, C. D., and Halpert, J. R. (2004) J. Biol. Chem., 279, 27294–27301.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao, Y., White, M. A., Muralidhara, B. K., Sun, L., Halpert, J. R., and Stout, C. D. (2006) J. Biol. Chem., 281, 5973–5981.PubMedCrossRefGoogle Scholar
  32. 32.
    Muralidhara, B. K., Negi, S., Chin, C. C., Braun, W., and Halpert, J. R. (2006) J. Biol. Chem., 281, 8051–8061.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao, Y., Sun, L., Muralidhara, B. K., Kumar, S., White, M. A., Stout, C. D., and Halpert, J. R. (2007) Biochemistry, 46, 11559–11567.PubMedCrossRefGoogle Scholar
  34. 34.
    Isin, E. M., and Guengerich, F. P. (2006) J. Biol. Chem., 281, 9127–9136.PubMedCrossRefGoogle Scholar
  35. 35.
    Omura, T. (2006) Chem. Biol. Interact., 163, 86–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Skulachev, V. P. (2001) Soros Obrazovat. Zh., 7, 4–9.Google Scholar
  37. 37.
    Hanucoglu, I., Rapoport, R., Weiner, I., and Sklam, D. (1993) Arch. Biochem. Byophys., 305, 489–498.CrossRefGoogle Scholar
  38. 38.
    Rapoport, R., Sklam, D., and Hanucoglu, I. (1995) Arch. Biochem. Biophys., 317, 412–416.PubMedCrossRefGoogle Scholar
  39. 39.
    Anandatheerthavarada, H. K., Addya, S., Dwivedi, H. S., Biswas, G., Mullick, J., and Avadhani, N. G. (1997) Arch. Biochem. Biophys., 339, 136–150.PubMedCrossRefGoogle Scholar
  40. 40.
    Center, M. B., Clay, C. D., Dalton, T. P., Dong, H., Nebert, D. W., and Shertzer, H. (2006) Biochem. Biophys. Res. Commun., 342, 1375–1381.CrossRefGoogle Scholar
  41. 41.
    Robin, M. A., Sauvage, I., Grandperret, T., Descatoire, V., Pessayre, D., and Fromenty, B. (2005) FEBS Lett., 579, 6895–6902.PubMedCrossRefGoogle Scholar
  42. 42.
    Bai, J., and Cederbaum, A. I. (2006) J. Biol. Chem., 281, 5128–5136.PubMedCrossRefGoogle Scholar
  43. 43.
    Addya, S., Anandatheerthavarada, H. K., Biswas, G., Bhagwat, S. V., Mullick, J., and Avadhany, N. G. (1997) J. Cell Biol., 139, 589–599.PubMedCrossRefGoogle Scholar
  44. 44.
    Neve, E. P. A., and Ingelman-Sundberg, M. (1999) FEBS Lett., 460, 309–314.PubMedCrossRefGoogle Scholar
  45. 45.
    Neve, E. P. A., and Ingelman-Sundberg, M. (2001) J. Biol. Chem., 276, 11317–11322.PubMedCrossRefGoogle Scholar
  46. 46.
    Robin, M. A., Anandatheerthavarada, H. K., Fang, J. K., Cudic, M., Otvos, N. G., and Avadhani, N. G. (2001) J. Biol. Chem., 276, 24680–24689.PubMedCrossRefGoogle Scholar
  47. 47.
    Robin, M. A., Anandatheerthavarada, H. K., Biswas, G., Babu, N., Sepuri, D. M., Gordon, D. M., Pain, D., and Avadhani, N. G. (2002) J. Biol. Chem., 277, 40583–40593.PubMedCrossRefGoogle Scholar
  48. 48.
    Raza, H., Prabu, S. K., Robin, M. A., and Avadhany, N. G. (2004) Diabetes, 53, 185–194.PubMedCrossRefGoogle Scholar
  49. 49.
    Fukae, J., Mizuno, Y., and Hattory, N. (2007) Mitochondrion, 7, 58–62.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations