Biochemistry (Moscow)

, Volume 73, Issue 7, pp 833–838 | Cite as

Tolerance to antimicrobial agents and persistence of Escherichia coli and cyanobacteria

  • V. D. SamuilovEmail author
  • A. V. Bulakhov
  • D. B. Kiselevsky
  • Yu. E. Kuznetsova
  • D. V. Molchanova
  • S. V. Sinitsyn
  • A. A. Shestak


Bacterial persistence is the tolerance of a small part of a cell population to bactericidal agents, which is attained by a suppression of important cell functions and subsequent deceleration or cessation of cell division. The growth rate is the decisive factor in the transition of the cells to the persister state. A comparative study of quickly growing Escherichia coli K-12 strain MC 4100 and cyanobacteria Synechocystis sp. PCC 6803 and Anabaena variabilis ATCC 29413 growing slowly was performed. The cyanobacterial cells, like E. coli cells, differed in sensitivity to antimicrobial substances depending on the growth phase. Carbenicillin inhibiting the synthesis of peptidoglycan, a component of the bacterial cell wall, and lincomycin inhibiting the protein synthesis gave rise to nucleoid decay in cells from exponential cultures of Synechocystis 6803 and did not influence the nucleoids in cells from stationary cultures. Carbenicillin suppressed the growth of exponential cultures and had no effect on cyanobacterial stationary cultures. A suppression of Synechocystis 6803 growth in the exponential phase by lincomycin was stronger than in the stationary phase. Similar data were obtained with cyanobacterial cells under the action of H2O2 or menadione, an inducer of reactive oxygen species production. Slowly growing cyanobacteria were similar to quickly growing E. coli in their characteristics. Persistence is a characteristic feature of cyanobacteria.

Key words

persistence tolerance antibiotics carbenicillin lincomycin reactive oxygen species E. coli cyanobacteria 





propidium iodide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bigger, J. W. (1944) Lancet, 11, 497–500 (cited by [2]).CrossRefGoogle Scholar
  2. 2.
    Lewis, K. (2005) Biochemistry (Moscow), 70, 267–274.CrossRefGoogle Scholar
  3. 3.
    Lewis, K. (2007) Nature Rev. Microbiol., 5, 48–56.CrossRefGoogle Scholar
  4. 4.
    Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K. (2004) J. Bacteriol., 186, 8172–8180.PubMedCrossRefGoogle Scholar
  5. 5.
    Spoering, A. L., and Lewis, K. (2001) J. Bacteriol., 183, 6746–6751.PubMedCrossRefGoogle Scholar
  6. 6.
    Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K. (2004) FEMS Microbiol. Lett., 230, 13–18.PubMedCrossRefGoogle Scholar
  7. 7.
    Moyed, H. S., and Bertrand, K. P. (1983) J. Bacteriol., 155, 768–775.PubMedGoogle Scholar
  8. 8.
    Falla, T. Y., and Chopra, I. (1998) Antimicrob. Agents Chemother., 42, 3282–3284.PubMedGoogle Scholar
  9. 9.
    Pedersen, K., Christensen, S. K., and Gerdes, K. (2002) Mol. Microbiol., 45, 501–510.PubMedCrossRefGoogle Scholar
  10. 10.
    Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., and Hazan, R. (2004) Trends Microbiol., 12, 66–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Engelberg-Kulka, H., Hazan, R., and Amitai, S. (2005) J. Cell Sci., 118, 4327–4332.PubMedCrossRefGoogle Scholar
  12. 12.
    LaFleur, M. D., Kumamoto, C. A., and Lewis, K. (2006) Antimicrob. Agents Chemother., 50, 3839–3846.PubMedCrossRefGoogle Scholar
  13. 13.
    Rippka, R., Derulles, J., Waterbury, J. B., Herdman, M., and Stainer, R. Y. (1979) J. Gen. Microbiol., 181, 1–60.Google Scholar
  14. 14.
    Stocks, S. M. (2004) Cytometry, Pt. A 61A, 189–195.Google Scholar
  15. 15.
    Trotta, E., Del Grosso, N., Erba, M., Melino, S., Cicero, D., and Paci, M. (2003) Eur. J. Biochem., 270, 4755–4761.PubMedCrossRefGoogle Scholar
  16. 16.
    Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.Google Scholar
  17. 17.
    Samuilov, V. D., Bezryadnov, D. V., Gusev, M. V., Kitashov, A. V., and Fedorenko, T. A. (2001) Biochemistry (Moscow), 66, 640–645.CrossRefGoogle Scholar
  18. 18.
    Samuilov, V. D., Timofeev, K. N., Sinitsyn, S. V., and Bezryadnov, D. V. (2004) Biochemistry (Moscow), 69, 926–933.CrossRefGoogle Scholar
  19. 19.
    Arkad’eva, Z. A. (1989) in Industrial Microbiology (Egorov, N. S., ed.) [in Russian] Vysshaya Shkola, Moscow, pp. 149–167.Google Scholar
  20. 20.
    Bukharin, O. V. (2006) Mikrobiol. Zh., No. 4, 4–8.Google Scholar
  21. 21.
    Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999) Science, 284, 1318–1322.PubMedCrossRefGoogle Scholar
  22. 22.
    Samuilov, V. D., Bezryadnov, D. V., Gusev, M. V., Kitashov, A. V., and Fedorenko, T. A. (1999) Biochemistry (Moscow), 64, 47–53.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • V. D. Samuilov
    • 1
    Email author
  • A. V. Bulakhov
    • 1
  • D. B. Kiselevsky
    • 1
  • Yu. E. Kuznetsova
    • 1
  • D. V. Molchanova
    • 1
  • S. V. Sinitsyn
    • 1
  • A. A. Shestak
    • 1
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations