Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 7, pp 783–790 | Cite as

Oxidative stress as regulatory factor for fatty-acid-induced uncoupling involving liver mitochondrial ADP/ATP and aspartate/glutamate antiporters of old rats

  • V. N. SamartsevEmail author
  • O. V. Kozhina
Article

Abstract

Palmitate-induced uncoupling, which involves ADP/ATP and aspartate/glutamate antiporters, has been studied in liver mitochondria of old rats (22–26 months) under conditions of lipid peroxidation and inhibition of oxidative stress by antioxidants—thiourea, Trolox, and ionol. It has been shown that in liver mitochondria of old rats in the absence of antioxidants and under conditions of overproduction of conjugated dienes, the protonophoric uncoupling activity of palmitate is not suppressed by either carboxyatractylate or aspartate used separately. However, the combination of carboxyatractylate and aspartate decreased uncoupling activity of palmitate by 81%. In this case, palmitate-induced uncoupling is limited by a stage insensitive to both carboxyatractylate and aspartate. In the presence of antioxidants, the palmitate-induced protonophoric uncoupling activity is suppressed by either carboxyatractylate or aspartate used separately. Under these conditions, palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter). In the absence of antioxidants, the uncoupling activity of palmitate is not suppressed by ADP either in the absence or in the presence of aspartate. However, in the presence of thiourea, Trolox, or ionol ADP decreased the uncoupling activity of palmitate by 38%. It is concluded that in liver mitochondria of old rats the development of oxidative stress in the presence of physiological substrates of ADP/ATP and aspartate/glutamate antiporters (ADP and aspartate) results in an increase of the protonophoric uncoupling activity of palmitate.

Key words

liver mitochondria aging oxidative stress reactive oxygen species fatty acids uncoupling ADP/ATP antiporter aspartate/glutamate antiporter 

Abbreviations

DNP

2,4-dinitrophenol

FCCP

carbonyl cyanide p-trifluoromethoxyphenylhydrazone

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lenaz, G. (1998) Biochim. Biophys. Acta, 1366, 53–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Hugnes, G., Murphy, M. P., and Ledgerwood, E. C. (2005) Biochem. J., 389, 83–89.CrossRefGoogle Scholar
  3. 3.
    Skulachev, V. P. (2006) Apoptosis, 11, 473–485.PubMedCrossRefGoogle Scholar
  4. 4.
    Brand, M. D., Affourtit, C., Esteves, T. C., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L., and Parker, N. (2004) Free Rad. Biol. Med., 37, 755–767.PubMedCrossRefGoogle Scholar
  5. 5.
    Andreev, A. Yu., Kushnareva, Yu. E., and Starkov, A. A. (2005) Biochemistry (Moscow), 70, 200–214.CrossRefGoogle Scholar
  6. 6.
    Judge, S., Jang, Y. M., Smith, A., Hagen, T., and Leeuwenburgh, C. (2005) FASEB J., 19, 419–421.PubMedGoogle Scholar
  7. 7.
    Armeni, T., Principato, G., Quiles, J. L., Pieri, C., Bompadre, S., and Battino, M. (2003) J. Bioenerg. Biomembr., 35, 181–191.PubMedCrossRefGoogle Scholar
  8. 8.
    Kamzalov, S., and Sohal, R. S. (2004) Exp. Gerontol., 39, 1199–1205.PubMedCrossRefGoogle Scholar
  9. 9.
    Skulachev, V. P. (1998) Biochim. Biophys. Acta, 1363, 100–124.PubMedCrossRefGoogle Scholar
  10. 10.
    Korshunov, S. S., Korkina, O. V., Ruuge, E. K., Skulachev, V. P., and Starkov, A. A. (1998) FEBS Lett., 435, 215–218.PubMedCrossRefGoogle Scholar
  11. 11.
    Mokhova, E. N., and Khailova, E. N. (2005) Biochemistry (Moscow), 70, 159–163.CrossRefGoogle Scholar
  12. 12.
    Samartsev, V. N., Mokhova, E. N., and Skulachev, V. P. (1997) FEBS Lett., 412, 179–182.PubMedCrossRefGoogle Scholar
  13. 13.
    Samartsev, V. N., Markova, O. V., Zeldi, I. P., and Smirnov, A. V. (1999) Biochemistry (Moscow), 64, 901–911.Google Scholar
  14. 14.
    Samartsev, V. N., Kozhina, O. V., and Polischuk, L. S. (2005) Biol. Membr. (Moscow), 22, 92–97.Google Scholar
  15. 15.
    Zapadnyuk, I. P., Zapadnyuk, V. I., Zakhariya, E. A., and Zapadnyuk, B. V. (1983) Laboratory Animals. Breeding, Maintenance and Use in Experiments [in Russian], Vyscha Shkola, Kiev.Google Scholar
  16. 16.
    Markova, O. V., Bondarenko, D. I., and Samartsev, V. N. (1999) Biochemistry (Moscow), 64, 565–570.Google Scholar
  17. 17.
    Hinkle, P. C., and Yu, M. L. (1979) J. Biol. Chem., 254, 2450–2455.PubMedGoogle Scholar
  18. 18.
    Samartsev, V. N., Polyschuk, L. S., Paidyganov, A. P., and Zeldi, I. P. (2004) Biochemistry (Moscow), 69, 678–686.CrossRefGoogle Scholar
  19. 19.
    Ambrosio, G., Flaherty, J. T., Duilio, C., Tritto, I., Santoro, G., Elia, P. P., Condorelli, M., and Chiariello, M. (1991) J. Clin. Invest., 87, 2056–2066.PubMedCrossRefGoogle Scholar
  20. 20.
    Droge, W. (2002) Physiol. Rev., 82, 47–82.PubMedGoogle Scholar
  21. 21.
    Sokol, R. J., Devereaux, M., and Khandwala, R. A. (1991) J. Lipid Res., 32, 1349–1357.PubMedGoogle Scholar
  22. 22.
    Paradies, G., and Ruggiero, F. M. (1991) Arch. Biochem. Biophys., 284, 332–337.PubMedCrossRefGoogle Scholar
  23. 23.
    Bakala, H., Delaval, E., Hamelin, M., Bismuth, J., Borot-Laloi, C., Corman, B., and Friguet, B. (2003) Eur. J. Biochem., 270, 2295–2302.PubMedCrossRefGoogle Scholar
  24. 24.
    Zenkov, N. K., Lankin, V. Z., and Men’schikova, E. B. (2001) Oxidative Stress: Biochemical and Pathophysiological Aspects [in Russian], MAIK Nauka/Interperiodica, Moscow.Google Scholar
  25. 25.
    Davies, M. J., Forni, L. G., and Willson, R. L. (1988) Biochem. J., 255, 513–522.PubMedGoogle Scholar
  26. 26.
    Bilenko, M. V. (1989) Ischemia and Reperfusion Damages of Organs [in Russian], Meditsina, Moscow.Google Scholar
  27. 27.
    Bohnensack, R., Kuster, U., and Letko, G. (1982) Biochim. Biophys. Acta, 680, 271–280.PubMedCrossRefGoogle Scholar
  28. 28.
    Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., van der Merr, R., and Tager, J. M. (1982) J. Biol. Chem., 257, 2754–2757.PubMedGoogle Scholar
  29. 29.
    Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A. (1979) J. Biol. Chem., 254, 6538–6547.PubMedGoogle Scholar
  30. 30.
    Schwenke, W. D., Soboll, S., Seitz, H. J., and Sies, H. (1981) Biochem. J., 200, 405–408.PubMedGoogle Scholar
  31. 31.
    Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) Eur. J. Biochem., 182, 585–592.PubMedCrossRefGoogle Scholar
  32. 32.
    Bodrova, M. E., Markova, O. V., Mokhova, E. N., and Samartsev, V. N. (1995) Biochemistry (Moscow), 60, 1027–1034.Google Scholar
  33. 33.
    Kozhina, O. V., Karatetskova, M. P., and Samartsev, V. N. (2006) Biol. Membr. (Moscow), 23, 213–218.Google Scholar
  34. 34.
    Klingenberg, M. (1985) Enzymes Biol. Membr., 4, 511–553.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Mari State UniversityYoshkar-OlaRussia

Personalised recommendations