Advertisement

Biochemistry (Moscow)

, 73:669 | Cite as

Anti-inflammatory activity of polysaccharide from Pholiota nameko

  • Haiping LiEmail author
  • Xiaoxiang Lu
  • Shuhai Zhang
  • Meijun Lu
  • Hongmei Liu
Accelerated Publication

Abstract

Pholiota nameko polysaccharide (PNPS-1) has been isolated and purified by enzymatic hydrolysis, hot water extraction, ethanol precipitation, and ion-exchange and gel-filtration chromatography. The anti-inflammatory activity of PNPS-1 was evaluated in rodents using xylene-induced ear edema, egg albumin-, carrageenin-, and formaldehyde-induced paw edema, cotton pellet granuloma test, adhesion of peritoneal leukocytes in vitro, and ulcerogenic activity. The results showed that PNPS-1 (5 mg/ear) inhibited topical edema in the mouse ear and at 100, 200, and 400 mg/kg (intraperitoneally) it significantly suppressed the development of egg albumin-, carrageenin-, and formaldehyde-induced paw edema in the animals. PNPS-1 (100, 200, and 400 mg/kg, per oral) significantly inhibited the growth of granuloma tissues induced by subcutaneously implanted cotton pellets in rats by 10.96, 18.07, and 43.75%, respectively. PNPS-1 also inhibited spontaneous and phorbol-12-myristate-13-acetate-activated adhesion of peritoneal leukocytes in vitro. Further, both acute as well as chronic administration of PNPS-1 (100, 200, and 400 mg/kg, per oral) did not produce any gastric lesion in rats. In conclusion, these data indicated that PNPS-1 possesses significant anti-inflammatory activity suggesting its potential as an anti-inflammatory agent for use in the treatment of various inflammatory-related diseases.

Key words

Pholiota nameko polysaccharide anti-inflammatory activity leukocyte adhesion 

Abbreviations

ASA

acetylsalicylic acid

C-PNPS

crude P. nameko polysaccharide

PMA

phorbol-12-myristate-13-acetate

PNPS-1

Pholiota nameko polysaccharide

References

  1. 1.
    Borchers, A. T., Stern, J. S., Hackman, R. M., Keen, C. L., and Gershwin, M. E. (1999) Proc. Soc. Exp. Biol. Med., 221, 281–293.PubMedCrossRefGoogle Scholar
  2. 2.
    Wasser, S. P. (2002) Appl. Microbiol. Biotechnol., 60, 258–274.PubMedCrossRefGoogle Scholar
  3. 3.
    Ng, T. B. (1998) Gen. Pharmacol., 30, 1–4.PubMedGoogle Scholar
  4. 4.
    Rajewska, J., and Balasinska, B. (2004) Postepy Hig. Med. Dosw. [in Polish], 58, 352–357.Google Scholar
  5. 5.
    Sullivan, R., Smith, J. E., and Rowan, N. J. (2006) Perspect. Biol. Med., 49, 159–170.PubMedCrossRefGoogle Scholar
  6. 6.
    Christen, S., Hagen, T. M., Shigenaga, M. K., and Ames, B. N. (1999) in Microbes and Malignancy: Infection as a Cause of Human Cancers (Parsonnet, J., ed.) Oxford University Press, New York-Oxford, pp. 35–88.Google Scholar
  7. 7.
    Balkwill, F., and Mantovani, A. (2001) Lancet, 357, 539–545.PubMedCrossRefGoogle Scholar
  8. 8.
    Coussens, L. M., and Werb, Z. (2002) Nature, 420, 860–867.PubMedCrossRefGoogle Scholar
  9. 9.
    Yasuhisa Matsumoto (1976) Res. Tradition. Chin. Med. [in Japanese], 11, 419.Google Scholar
  10. 10.
    Molitoris, H. P. (1994) Folia Microbiol., 392, 91–98.CrossRefGoogle Scholar
  11. 11.
    Li, H., and Wang, S. (2007) Int. J. Biol. Macromol., 40, 134–138.PubMedCrossRefGoogle Scholar
  12. 12.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Analyt. Chem., 28, 350–356.CrossRefGoogle Scholar
  13. 13.
    Atta, A. H., and Alkohafi, A. (1998) J. Ethnopharmacol., 60, 117–124.PubMedCrossRefGoogle Scholar
  14. 14.
    Okoli, C. O., and Akah, P. A. (2000) J. Alternat. Complement. Med., 6, 423–427.CrossRefGoogle Scholar
  15. 15.
    Kasahara, Y., Hikino, H., Tsurufiji, S., Watanabe, M., and Ohuchi, K. (1985) Planta Med., 51, 325–331.PubMedCrossRefGoogle Scholar
  16. 16.
    Brownlee, G. (1950) Lancet, 1, 157–159.PubMedCrossRefGoogle Scholar
  17. 17.
    Winter, A. C., and Porter, C. C. (1957) J. Am. Pharm. Assoc. (Baltim.), 46, 515–519.Google Scholar
  18. 18.
    Popov, S. V., Popova, G. Yu., Ovodova, R. G., and Ovodov, Yu. S. (2005) Fitoterapiya, 76, 281–287.CrossRefGoogle Scholar
  19. 19.
    Fraser, I., Huges, D., and Gordon, S. (1993) Nature, 364, 343–346.PubMedCrossRefGoogle Scholar
  20. 20.
    Amresh, G., Reddy, G. D., Rao, Ch. V., and Singh, P. N. (2007) J. Ethnopharmacol., 110, 526–531.PubMedCrossRefGoogle Scholar
  21. 21.
    Sairam, K., Rao, Ch. V., Dora Babu, M., and Goel, R. K. (2002) J. Ethnopharmacol., 82, 1–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Lull, C., Wichers, H. J., and Savelkoul, H. F. (2005) Mediators Inflamm., 2, 63–80.CrossRefGoogle Scholar
  23. 23.
    Vinegar, R., Schreiber, W., and Hugo, R. J. (1969) J. Pharmacol. Exp. Ther., 166, 96–103.PubMedGoogle Scholar
  24. 24.
    Wheeler-Aceto, H., and Cowan, A. (1991) Agents Action, 34, 264–269.CrossRefGoogle Scholar
  25. 25.
    Seyle, H. (1949) Brit. Med. J., 2, 1129–1135.CrossRefGoogle Scholar
  26. 26.
    Granger, N. D., and Schmid-Schonbein, G. W. (1994) in Physiology and Pathophysiology of Leukocyte Adhesion, 1st Edn., Oxford University Press, USA, pp. 205–211.Google Scholar
  27. 27.
    Wagner, J. G., and Roth, R. A. (1999) J. Leukoc. Biol., 66, 10–24.PubMedGoogle Scholar
  28. 28.
    Pagella, P. G., Bellavite, O., Agozzino, S., Dona, G. C., Cremonesi, P., and Desantis, F. (1983) Arzneimittelforschung, 33, 716–726.PubMedGoogle Scholar
  29. 29.
    Jain, N. K., Kulkarni, S. K., and Singh, A. (2002) Life Sci., 70, 2857–2869.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • Haiping Li
    • 1
    Email author
  • Xiaoxiang Lu
    • 1
  • Shuhai Zhang
    • 1
  • Meijun Lu
    • 1
  • Hongmei Liu
    • 1
  1. 1.Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food ScienceTianjin University of CommerceTianjinP. R. China

Personalised recommendations