Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 4, pp 470–478 | Cite as

Effect of amino acids on X-ray-induced hydrogen peroxide and hydroxyl radical formation in water and 8-oxoguanine in DNA

  • I. N. Shtarkman
  • S. V. Gudkov
  • A. V. Chernikov
  • V. I. BruskovEmail author
Article

Abstract

Generation of hydrogen peroxide and hydroxyl radicals in L-amino acid solutions in phosphate buffer, pH 7.4, under X-ray irradiation was determined by enhanced chemiluminescence in the luminol-p-iodophenol-peroxidase system and using the fluorescent probe coumarin-3-carboxylic acid, respectively. Amino acids are divided into three groups according to their effect on the hydrogen peroxide formation under irradiation: those decreasing yield of H2O2, having no effect, and increasing its yield. All studied amino acids at 1 mM concentration decrease the yield of hydroxyl radicals in solution under X-ray irradiation. However, the highest effect is observed in the order: Cys > His > Phe = Met = Trp > Tyr. At Cys, Tyr, and His concentrations close to physiological, the yield of hydroxyl radicals decreases significantly. Immunoenzyme analysis using monoclonal antibodies to 8-oxoguanine (8-oxo-7,8-dihydroguanine) was applied to study the effect of amino acids with the most pronounced antioxidant properties (Cys, Met, Tyr, Trp, Phe, His, Lys, Arg, Pro) on 8-oxoguanine formation in vitro under X-ray irradiation. It is shown that amino acids decrease the content of 8-oxoguanine in DNA. These amino acids within DNA-binding proteins may protect intracellular DNA against oxidative damage caused by formation of reactive oxygen species in conditions of moderate oxidative stress.

Key words

amino acids X-ray irradiation hydrogen peroxide hydroxyl radicals antioxidants 8-oxoguanine in DNA 

Abbreviations

ABTS

2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)

CCA

coumarin-3-carboxylic acid

DRF

dose reduction factor

DVF

dose variation factor

EPR

electron paramagnetic resonance

LLPR

long-lived protein radicals

7-OH-CCA

7-hydroxy-coumarin-3-carboxylic acid

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Men’shchikova, E. B., Lankin, V. Z., Zenkov, N. K., Bondar’, I. A., Krugovykh, N. F., and Trufakin, V. A. (2006) Oxidative Stress. Prooxidants and Antioxidants [in Russian], Slovo, Moscow.Google Scholar
  2. 2.
    Kudryashov, Yu. B. (2004) Radiation Biophysics (Ionizing Radiations), [in Russian], Fizmatlit, Moscow.Google Scholar
  3. 3.
    Bruskov, V. I., Malakhova, L. V., Masalimov, Z. K., and Chernikov, A. V. (2002) Nucleic Acids Res., 30, 1354–1363.PubMedCrossRefGoogle Scholar
  4. 4.
    Bruskov, V. I., Masalimov, Z. K., and Chernikov, A. V. (2002) Dokl. RAN, 384, 821–824.Google Scholar
  5. 5.
    Chernikov, A. V., and Bruskov, V. I. (2002) Biofizika, 47, 773–781.PubMedGoogle Scholar
  6. 6.
    Bruskov, V. I., Chernikov, A. V., Gudkov, S. V., and Masalimov, Z. K. (2003) Biofizika, 48, 1022–11029.PubMedGoogle Scholar
  7. 7.
    Oktyabrskii, O. N., and Smirnova, G. V. (2007) Biochemistry (Moscow), 72, 132–145.CrossRefGoogle Scholar
  8. 8.
    Du, J., and Gebicki, M. (2004) Int. J. Biochem. Cell Biol., 36, 2334–2343.PubMedCrossRefGoogle Scholar
  9. 9.
    Koyama, S., Kodama, S., Suzuki, K., Matsumoto, T., Miyazaki, T., and Watanabe, M. (1998) Mutat. Res., 421, 45–54.PubMedGoogle Scholar
  10. 10.
    Kumagai, J., Nakama, M., Miyazaki, T., Ise, T., Kodama, S., and Watanabe, M. (2002) Radiat. Phys. Chem., 64, 293–297.CrossRefGoogle Scholar
  11. 11.
    Miyazaki, T., Morikawa, A., Kumagai, J., Ikehata, M., Koana, T., and Kikuchi, S. (2002) Radiat. Phys. Chem., 65, 151–157.CrossRefGoogle Scholar
  12. 12.
    Kumagai, J., Masui, K., Itagaki, Y., Shiotani, M., Kodama, S., Watanabe, M., and Miyazaki, T. (2003) Radiat. Res., 161, 95–102.CrossRefGoogle Scholar
  13. 13.
    Kumagai, J., Kawaura, T., Miyazaki, T., Prost, M., Prost, E., Watanabe, M., and Quentin-Leclercq, J. (2003) Radiat. Phys. Chem., 66, 17–25.CrossRefGoogle Scholar
  14. 14.
    Ostdal, H., Davies, M. J., and Andersen, H. J. (2002) Free Rad. Biol. Med., 33, 201–209.PubMedCrossRefGoogle Scholar
  15. 15.
    Kumagai, J., Katon, H., Miyazaki, T., Hidema, J., and Kumagai, T. (1999) J. Radiat. Res., 40, 303–310.PubMedCrossRefGoogle Scholar
  16. 16.
    Pietraforte, D., and Minetti, M. (1997) Biochem. J., 325, 675–684.PubMedGoogle Scholar
  17. 17.
    Luxford, C., Morin, B., Dean, R. T., and Davies, M. J. (1999) Biochem. J., 344, 125–134.PubMedCrossRefGoogle Scholar
  18. 18.
    Gudkov, S. V., Shtarkman, I. N., Chernikov, A. V., Usacheva, A. M., and Bruskov, V. I. (2007) Dokl. RAN, 413, 261–263.Google Scholar
  19. 19.
    Yoshimura, T., Matsuno, K., Miyazaki, T., Suzuki, K., and Watanabe, M. (1993) Radiat. Res., 136, 361–365.PubMedCrossRefGoogle Scholar
  20. 20.
    Nauser, T., Koppenol, W. H., and Gebicki, J. M. (2005) Biochem. J., 392, 693–701.PubMedCrossRefGoogle Scholar
  21. 21.
    Aruoma, O. I. (2003) Mut. Res., 523, 9–20.Google Scholar
  22. 22.
    Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V., and Bruskov, V. I. (2006) Dokl. RAN, 407, 115–118.Google Scholar
  23. 23.
    Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V., and Bruskov, V. I. (2006) Radiat. Res., 165, 538–545.PubMedCrossRefGoogle Scholar
  24. 24.
    Meister, A., and Anderson, M. E. (1983) Ann. Rev. Biochem., 52, 711–760.PubMedCrossRefGoogle Scholar
  25. 25.
    Boldyrev, A. A. (1998) Carnosine [in Russian], Moscow State University Publishing House, Moscow.Google Scholar
  26. 26.
    Khavinson, V. Kh., Kvetnoy, I. M., and Ashmarin, I. P. (2002) Uspekhi Sovrem. Biol., 122, 190–203.Google Scholar
  27. 27.
    Lass, A., Suessenbacher, A., Olkart, G. W., Mayer, B., and Brunner, F. (2002) Mol. Pharmacol., 61, 1081–1088.PubMedCrossRefGoogle Scholar
  28. 28.
    Hayashi, T., Juilet, P. A. R., Matsui-Hirai, H., Miyazaki, A., Fukatsu, A., Funami, J., Iguchi, A., and Ignarro, L. J. (2005) Proc. Natl. Acad. Sci. USA, 102, 13681–13686.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, C., and Dickman, M. B. (2005) Proc. Natl. Acad. Sci. USA, 102, 3459–3464.PubMedCrossRefGoogle Scholar
  30. 30.
    Decker, E. A., Livisay, S. A., and Zhou, S. (2000) Biochemistry (Moscow), 65, 766–770.Google Scholar
  31. 31.
    Milligan, J. R., Aguilera, J. A., Ly, A., Tran, N. Q., Hoang, O., and Ward, J. F. (2003) Nucleic Acids Res., 31, 6258–6263.PubMedCrossRefGoogle Scholar
  32. 32.
    Bruskov, V. I., Gaziev, A. I., Malakhova, L. V., Mantsygin, Yu. A., and Morenkov, O. S. (1996) Biochemistry (Moscow), 61, 535–540.Google Scholar
  33. 33.
    Pikaev, A. K. (1986) Modern Radiation Chemistry. Radiolysis of Gases and Liquids [in Russian], Nauka, Moscow.Google Scholar
  34. 34.
    Stadtman, E. R. (1993) Annu. Rev. Biochem., 62, 797–821.PubMedCrossRefGoogle Scholar
  35. 35.
    Dorfman, L. M., and Adams, G. E. (1973) Natl. Stand. Ref. Data Ser., US Natl. Bur. Stand., No. 46, 43–49.Google Scholar
  36. 36.
    Gebicki, S., and Gebicki, J. M. (1993) Biochem. J., 289, 743–749.PubMedGoogle Scholar
  37. 37.
    Braams, R. (1966) Radiat. Res., 27, 319–329.PubMedCrossRefGoogle Scholar
  38. 38.
    Davies, K. J. A., Delsignore, M. E., and Lin, S. W. (1987) J. Biol. Chem., 262, 9902–9907.PubMedGoogle Scholar
  39. 39.
    Chistyakov, V. A., Kornienko, I. V., Kletskii, M. E., Kornienko, I. E., Lisitsin, A. S., and Novikov, V. V. (2005) Biofizika, 50, 601–605.Google Scholar
  40. 40.
    Stadtman, E. R., and Berlett, B. S. (1991) J. Biol. Chem., 296, 17201–17211.Google Scholar
  41. 41.
    Jovanovic, S. V., and Simic, M. G. (1986) J. Phys. Chem., 90, 974–978.CrossRefGoogle Scholar
  42. 42.
    Hall, D. B., Holmin, R. E., and Barton, J. K. (1996) Nature, 382, 731–735.PubMedCrossRefGoogle Scholar
  43. 43.
    Henderson, P. T., Delanay, J. C., Gu, F., Tannenbaum, S. R., and Essigmann, J. M. (2002) Biochemistry, 41, 914–921.PubMedCrossRefGoogle Scholar
  44. 44.
    Pan, J., Lin, W., Wang, W., Han, Z., Lu, C., Yao, S., Lin, N., and Zhu, D. (2001) Biophys. Chem., 89, 193–199.PubMedCrossRefGoogle Scholar
  45. 45.
    Newton, G. L., Ly, A., Tran, N. Q., Ward, J. F., and Milligan, J. R. (2004) Int. J. Radiat. Biol., 80, 643–651.PubMedCrossRefGoogle Scholar
  46. 46.
    Milligan, J. R., Tran, N. Q., Ly, A., and Ward, J. F. (2004) Biochemistry, 43, 5102–5108.PubMedCrossRefGoogle Scholar
  47. 47.
    Ly, A., Bullick, S., Won, J.-H., and Milligan, J. R. (2004) Int. J. Radiat. Biol., 82, 421–433.CrossRefGoogle Scholar
  48. 48.
    Midorikawa, K., Murata, M., and Kawanishi, S. (2005) Biochem. Biophys. Res. Commun., 333, 1073–1077.PubMedCrossRefGoogle Scholar
  49. 49.
    Furukava, A., Hiraku, Y., Oikawa, S., Luxford, C., Davies, M. J., and Kavanishi, S. (2005) Biochem. J., 388, 813–818.CrossRefGoogle Scholar
  50. 50.
    Burlakova, E. B. (2007) Ross. Khim. Zh., 51, 3–12.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • I. N. Shtarkman
    • 1
    • 2
  • S. V. Gudkov
    • 1
  • A. V. Chernikov
    • 1
  • V. I. Bruskov
    • 1
    • 2
    Email author
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Pushchino State UniversityPushchino, Moscow RegionRussia

Personalised recommendations