Biochemistry (Moscow)

, Volume 73, Issue 4, pp 458–462 | Cite as

How α-crystallin prevents the aggregation of insulin

  • N. L. VekshinEmail author


Using steady-state, polarized, and phase-modulation fluorometry, the dithiothreitol-induced denaturation of insulin and formation of its complex with α-crystallin in solution were studied. Prevention of the aggregation of insulin by α-crystallin is due to formation of chaperone complexes, i.e. interaction of chains of the denatured insulin with α-crystallin. The conformational changes in α-crystallin that occur during complex formation are rather small. It is unlikely that N-termini are directly involved in the complex formation. The 8-anilino-1-naphthalenesulfonate (ANS) is not sensitive to the complex formation. ANS emits mainly from α-crystallin monomers, dimers, and tetramers, but not from oligomers or aggregates. The possibility of highly sensitive detection of aggregates by light scattering using a spectrofluorometer with crossed monochromators is demonstrated.

Key words

α-crystallin insulin chaperone complex aggregation light scattering fluorescence 



8-anilino-1-naphthalenesulfonic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liao, J.-H., Lee, J.-S., and Chiou, S.-H. (2002) Biochem. Biophys. Res. Commun., 295, 854–861.PubMedCrossRefGoogle Scholar
  2. 2.
    Vanhoudt, J., Abgar, S., Aerts, T., and Clauwaert, J. (2000) Eur. J. Biochem., 267, 3848–3858.PubMedCrossRefGoogle Scholar
  3. 3.
    Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S. (1988) Nature, 336, 254–257.PubMedCrossRefGoogle Scholar
  4. 4.
    Kumamoto, C. A. (1991) Mol. Microbiol., 5, 19–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Hartl, F.-U., Hlodan, R., and Langer, T. (1994) Trends Biochem. Sci., 19, 20–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Muchowski, P. J., and Clark, J. I. (1998) Proc. Natl. Acad. Sci. USA, 95, 1004–1009.PubMedCrossRefGoogle Scholar
  7. 7.
    Lindner, R. A., Kapur, A., Mariani, M., Titmuss, S., and Carver, J. (1998) Eur. J. Biochem., 258, 170–183.PubMedCrossRefGoogle Scholar
  8. 8.
    Farahbakhsh, Z., Huang, Q., Ding, L., Altenbach, C., Steinhoff, H. J., Horwitz, J., and Hubbel, W. L. (1995) Biochemistry, 34, 509–514.PubMedCrossRefGoogle Scholar
  9. 9.
    Mandal, K., Dillon, J., and Gaillard, E. R. (2000) Photochem. Photobiol., 71, 470–475.PubMedCrossRefGoogle Scholar
  10. 10.
    Das, B. K., Liang, J. J-N., and Chakrabarti, B. (1997) Curr. Eye Res., 16, 303–309.PubMedCrossRefGoogle Scholar
  11. 11.
    Augusteyn, R. C., Ghiggino, K. P., and Putilina, T. (1993) Biochim. Biophys. Acta, 1162, 61–71.PubMedGoogle Scholar
  12. 12.
    Vekshin, N. L. (2006) in Fluorescence Spectroscopy of Biopolymers [in Russian], Foton-vek, Pushchino.Google Scholar
  13. 13.
    Vekshin, N. L., and Sukharev, V. I. (2005) Biophysics, 50, 230–235.Google Scholar
  14. 14.
    Stevens, A., and Augusteyn, R. C. (1997) Eur. J. Biochem., 243, 792–797.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations